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ABSTRACT

Glyphosate is a widely used broad spectrum herbicide, reported to induce various toxic
effects in non-target species, but its carcincegenic potential is still unknown. Here we showead
the carcinogenic effects of glyphosate using 2-stage mouse skin carcinogenesis model and
proteomic analysis. Carcinogenicity study revealed that glyphosate has tumor promoting
activity. Proteomic analysis using 2-dimensional gel electrophoresis and mass spectrometry
showed that 22 spots were differentially expressed (»>2 foid) on glyphosate, 7, 12-
dimethyibenz{ajanthracene (DMBA} and 12-O-tetradecanoyi-phorbol-13-acetate (TPA)

application over unireated control. Among them, 9 proteins (franslation elongation factor

eEF-1 alpha chain, carbonic anhydrase I, annexin I, caleyclin, fab fragment anti-VEGF

antibody, peroxiredoxin-2, superoxide dismutase [Cu-Znj, stefin A3, and calgranulin-B)
were common and showed similar expression pattern in glyphosate and TPA-treated mouse
skin. These proteins are known to be involved in several key processes like apoptosis and
growth-inhibition, anti-oxidantresponses, etc. The up-regulation of caleyclin, calgranulin-B
and down-regulation of superoxide dismutase [Cu~Zn} was further confirmed by
immunoblotting, indicating that these proteins can be good candidate biomarkers for skin
carcinegenesis induced by glyphosate. Altogether, these results suggested that glyphosate
has tumor promoting potential in skin carcinogenesis and its mechanism seems to be
similar to TPA.

@ 2009 Elsevier B.V. All rights reserved.

1. Introduction

a commmercial formulation named, Roundup is a widely used
herbicide on both cropland and non-cropland areas [4]. The

Pesticides, used extensively for controlling pest and destroy-
ing weeds are ubiguitous contaminants accumulating in
environment and hence humans get unavoidably exposed to
these pesticides. About 3 billion: tons of pesticides are used
every year, on agricultural crops worldwide {1]. In some cases,
even short-term exposure of the pesticides can make impact
on human health. Apart from the other toxic effects,
pesticides are reported to cause genoctoxicity/carcinogenicity
also. Some pesticides have been classified as carcinogens by
the United States Environmental Protection Agency (USEPA)
[2] and International Agency for Research on Cancer (IARC) {3}
Glyphosate, N-(phosphonomethyl) glycine, cormmonly sold as
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potential activity of glyphosate is through competitive inhibi-
tion of the enolpyruvyl-shikimate-phosphate synthase, an
enzyme essential to the synthesis of aromatic amino acids in
plants {5]. Toxicological profile of glyphosate, showed thatitis
a comparatively safe herbicide for animals {6]. Glyphosate
alone or with its formulation products, such as, surfactants
and permeabilizing agents is usually considered to be
harmless under both normal usage and chronic exposure [4].
In 1993, USEPA categorized this compound into class E, which
means that it is probably not carcinogenic to humans [7].
Despite these reports, some case-control studies suggested an
association between glyphosate exposure and the risk of non-
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Hedgkin’s lymphoma [8,9]. In another study, both technical
grade glyphosate and Roundup were shown to cause a rapid
increase in cell division in human breast cancer cells [10].
Glyphosate has also been shown as a skin irritant {11].
Regarding the genotoxic potential, glyphosate exposure to
human lymphocytes in vitro resulted in increased sister
chromatid exchanges [1%, chromosomal aberrations {13],
and indicators of oxidative stress {14]. A recent study from
our laboratory also showed the clastogenic effects of glypho-
sate in bone marrow cells of Swiss albino mice {15} These
reports prompted us to investigate its carcinogenic effect in
long-term animal bicassay.

To evaluate toxicity/carcinogenicity induced by physical and
chernical agents including pesticides, various test systems have
been employed in bacteria, rodents and mammalian cells {16-
18]. Each of these environmental challenges causes changes in
DNA conformation, alterations in the levels of mRNA and
protein expression, and post-transiational modifications such
as phosphorylation and glycosylation of proteins specific to
each stressor [19]. In recent years, there has been considerable
interest in linking carcinogenic/toxic responses to gene and
protein expression. Toxicoproteomics has received a lot of
attention as a valuable tool to search reliable early predictive
toxicity markers in response to environmental stimuli {201, Two-
dimensional gel electrophoresis {2-DE} coupled with mass
spectrometry (MS); a high-throughput technique allows pro-
teins of interest to be identified by their expression and/or
modification pattern rather than using the traditional approach
of translating gene expression data. Biomarkers can be used to
identify causal associations and to make better quantitative
estimates of those associations at relevant levels of exposure
[21]. Yamamoto et al. {22} have utilized protecmic approach to
identify potential biomarker candidates of hepatotoxicant
exposure in rat liver.

Skin is the largest organ in the body and dermal contact is
one of the most probable routes of humen exposure to
pesticides, thus, mouse skin model represents a logical exper-
imental choice {23]. As the long-term bioassay for carcinoge-
nicity is expansive, time consuming and involves a large
number of animals and ethical issues, development of bio-
markers after short-term exposure are needed. The present
investigation was carried out to study the carcinogenic poten-
tial of glyphosate and to identify differentially expressed
proteins, using 2-DE and MS analysis after treatment with
glyphosate, a known tumor promoter, 12-o-tetradecanoyl-
phorbol-13-acetate {TPA) and tumor initator, 7, 12-dimethyl-
benzfalanthracene (DMBA) in mouse skin. Altered proteins
identified through proteomic approach in our study may be
potentally useful as early biomarkers, to detect the adverse
effects of glyphosate.

2. Materials and methods
2.1, Materials

The commercial formulation of the herbicide glyphosate {N-
phosphonomethyl-glycine) Roundup Criginel® (glyphosate
41%, POEA=15%—Monsanto Company, St. Louis, MO, USA)}
was used, which contains 360 g/l glyphosate acid equivalent

as the isopropylamine salt and was procured from local market.
Immobilized pH gradient (IPG) strips and 0.5% pH 3-10 IPG buffer
were purchased from Bic-Rad Laboratories (Hercules, CA, USA).
DMBA, TPA, CHAPS, DTT, and beta-actin {clone AC-74) antibody
were from Sigma-Aldrich (Missourd, USA). DNase/RNase was
from Bangalore Genei (Bangalore, India). The rest of the
chernicals used in the study were of analytical grade of purity
and procured locally.

2.2. Animals and treatments
2.2.1.  Carcinogenicity study

Male, Swiss albino mice (12-15 g body weight [b.wt]) were taken
from Indian Institute of Toxicology Research (ITR) animal
breeding colony and acclimatized for 1week. The ethical
approval for the experiment was obtained from institutional
ethical committee. The animals were kept under standard
laboratory conditions {temperature 23272 °C, relative humidity
55+ 5%) and were fed with synthetic pellet basal diet {Ashirwad,
Chandigarh, India} and tap water ad libitum. Animals were
randomly divided into 8 groups of 20 animals each. Hair were
dlipped in the dorsal region with proper care in an area of 2 cm”
using electrical clippers, not lubricated with oil or grease. The
leng-term treatment was given as described earlier {24]. Briefly,

Group [ Unireated control {(No treatment).

Group II Glyphosate alone (25 mg/kg b.wt, topically 3 times
per week).

Group Il DMBA +TPA {Single topical application of DMBA,
52 ug/mouse followed 1 week later by thrice a week
application of TPA, 5 ug/mouse}.

CGroup IV Glyphosate {s}+ TPA (Single topical application of
glyphosate, 25 mg/kgb.wt followed 1 week laterby
TPA application as in group ).

Group V Glyphesate {m)+TPA {Thrice a week topical appli-
cation of glyphosate, 25 mg/kg b.wt for 3 weeks
{total of 9epplications], followed 1 week laterby TPA
application: as in group ).

Group Vi DMBA {Single topical application of DMBA, 52 pg/
mouse}.

Group VII TPA (Thrice a week topical application of TPA,
5 ng/mouse).

Group VIII DMBA +glyphosate (Single topical application of
DMBA [as in group I, followed 1 week later by
topical treatmment of glyphosate, 25 mg/kg b.wt thrice
per week).

Vehicle for glyphosate, DMBA and TPA were 50% ethanol
and acetone respectively.

Animals from all the groups were examined every week for
gross morphological changes including body weight changes,
development and volume of squamous cell papillomas
{tumnors) locally on the skin during the entire study period
and tumors larger than 1 mm diameter, were included in the
total number of tumors. Tumor volume per tumor bearing
mouse was calculated in each group using formula
V=Dxd?xn/6 {(where D=bigger dimension and d=smaller
dimension). All the surviving animals were sacrificed at the
end of the study period, i.e. 32 weeks for complete carcino-
genic, tumor initiating and promoting studies.
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2.2.2.  Proteomic study

For the proteomic studies, mice of similar sex, age and weight
as used for carcinogenicity study were selected. Animals were
divided into 4 groups of 4 animals sach and treatment was
given as described below:

Group I Untreated controls (No treatinent}.
Group I Glyphosate (Single topical application, 50 mg/kg b.
wt/mouse).
Group [II DMBA {Single topical application of DMBA, 104 ng/
mouse).
Group IV TPA (Single topical application of TPA, 10 ug/mouse).

2.3. Sample preparation for 2-DE

After 24 h, the animals were sacrificed humanly, and skin
tissues from the freatment site were excised with the help of
sharp scissor and transferred into precooled dishes. The hair
were removed with sharp scalpel blades, and subcutaneous
fat was scrapped off, on ice. Small pieces of cleaned skin
tissues of each mouse from all the groups were then
homogenized {(10%w/v) individually, in 2-DE lysis buffer
containing 8 M urea, 4% CHAPS, 10 mM DTT, 0.5% pH 3-10
PG buffer, 5 mM TBP, DNase/RNase and 1 mM PMSF. The lysed
samples were sonicated for 10s for 3 strokes followed by a
centrifugation at 13,000 rpm for 30 min at 4 °C and pooled for
the respective group. After guantification of proteins by
Lowry's method, the supernatants were stored at -80°C
until use for electrophoresis.

2.4, 2-DE for differential protein expression

IEF was carried out using commercially dedicated equipment,
Protean IEF Cell {Bio-Rad, Hercules, CA, USA}. For the first
dimension, 17 cm non-linear IPG (pH 3-10} strips were used as
per menufacturer’s instructions with minor modifications.
Briefly, 250 ug of protein from each pooled sample was diluted
to 300 pl with rehydration solution {7 M ures, 2M thiourea,
4% CHAPS, 65mM DTT, 0.5% pH 3-10 IPG buffer, and trace
bromophenol blue), and applied by passive rehydration on
separate [PG strips. IEF was performed for each individual
sample to a total of 45.5 kVh. All IEF steps were carried out at
20 °C. After the first-dimensional IEF, focused IPG strips were
placed in an equilibration solution (6 M urea, 2% SDS, 20%
glycerol, 50 mM Tris-HCl, and 0.01% w/v bromophenol blue)
containing 1% DTT for 15 min with shaking in the first step
followed by 2.5% w/vIAA in equilibration buffer for an additional
15 min in the second step. The gels were then trensferred and
placed on a 12% polyacrylamide gel and a 0.5% low melting
agarose overlay containing 0.1% SDS and 37.5 mM Tris (pH 8.8),
was warmed to its melting point and used to seal the IPG strips
to the surface of the gel. Molecular weight markers were placed
onto the gel by pipetting 8-10 ul onto a piece of blotting paper
which was then loaded onto the gel surface. Separation in the
second dimension was carried out using Protean II xi electro-
phoresis equipment {Bio-Rad, Hercules, CA, USA} and Tris-
glycine-SDS {pH 8.3) as the electrode buffer, the gels were run
at 15 mA/gel until the bromophenol blue dye marker had
reached the bottorm of the gel. Each experiment was performed
in triplicate to obtain the reproducible results.

2.5. Staining and image analysis

After completion of the second-dimension electrophoresis,
the gels were fixed and stained by using a fast silver staining
protocol with neutral silver nitrate {25]. Analysis of the gels
including background subtraction, spot detection, volume
normalization and differences in protein expression levels
among samples were analyzed by using PDQuest software Ver.
7.4.0 {Bio-Rad Hercules, CA, USA). To determine the variation,
3 gels were prepared for each sample. The protein spots that
varied >2 fold change and were specific for the test groups and
the control group were manually labeled and considered for
MS analysis.

2.6. Matrix-assisted laser desorption/ ionization time-of-
flight {(MALDI-TOF/TOF} and liguid chromatography wmass
spectrometry (LC-MS) for protein identification

Differential protein spots of interest were excised manually
by using pipette tips and washed 3 times with de-ionized
water. Each spot was placed into a 1.5 ml microtube filled
with de-ionized water. In-gel digestion for peptide mass
fingerprint (PMF) analysis and mass specirometric analysis
were performed at The Centre for Genomic Applications,
New Delhi (India). In brief, trypsinized peptide samples
were dissclved and mixed with matrix, namely «-cyano-4-
hydroxy cinnamic acid. Following drying, the peptides
were spotted on ground steel plate and subjected to Bruker
Ultraflex MALDI-TOF/TOF and 2D Nano LC-ESI-Trap {Agilent)
for mass spectrometric identification. The MALDI-TOF/TOF
was equipped with a pulsed nitrogen laser. System calibra-
fion was performed using peptide fragment peaks produced
by auto-digestion of trypsin as an internal standard for
every peptide sample to ensure high mass accuracy and to
control possible variations arose due to protein extraction,
trypsinization, reconstitution and suppression of ioniza-
tion by highly abundant species and incomplete/non-
homogeneocus crystallization of proteins and peptides dwring
matrix preparation.

Data acquisition and analysis was performed using flex
control and flex analysis/biotools version 2.2 software, re-
spectively. Data was acquired in reflectron positive mode
using 15-18% laser power. Mass tolerance and monoisotopic
values (50 ppm/100 ppm for peptide mass fingerprint and
peptide mass tolerance of 2 Da for MS/MS spectra) were used
for searching. The missed cleavage sites were allowed up to 1;
the fixed modification was selected as carbamidomethylation
{cysteine); the variable modification was selected as oxidation
{methionine). Probability based MOWSE score was calculated
in terms of ion score ~10§L0g {P), where P is the probability
and observed match was considered as a random event.
Protein scores were derived from ions as a non-probabilistic
basis for ranking protein hits and proteins identified by
MALDI-TOF and LC/MS were in the expected size range
based on its position in the gel. The datasets of the MS
spectra, including peptide sequence information, were
searched against the SWISS-PROT (GeneBio, Geneva, Switzer-
land} and NCBInr database using Mascot Daemon {Matrix
Science, London, UK} as a client attached to the Mascot search
protocol.

MONGLY03045837



954 JOURNAL

OF PROTEO

MICS 73 {20198} 951-964

2.7. Immunoblot analysis

The differential proteins screened with 2-DE were confirmed
by Western blotting. Briefly, skin tssue samples were lysed in
lysis buffer (8 M ures, 4% CHAPS, 10 mM DTT, 0.5% pH 3-10 IPG
buffer, 5 mM TBP, DNase/RNase and 1 mM PMSF) and resolved
on 12-15% polyacrylamide gel, then electro-transferred onto
polyvinylidene fluoride membranes (Millipore, USA). After
blocking with 5% non-fat dry milk, the membranes were
immunoblotted with antibodies of calcyclin (Santa Cruz Bio-
technology Inc., Europe}, calgranulin-B {Santa Cruz Biotechnol-
ogy Inc., Europe}, superoxide dismutase [Cu-Zn] (50D 1) (Santa
Cruz Biotechnology Inc, Europe} and beta-actin at dilutions
recommended by the suppliers. Horse radish conjugated
secondary antibodies and chemiluminescence kit (Millipore,
USA), were used for detection. Protein expression was visualized
by Versa Doc Imaging System {Bio-Rad, Hercules, CA, USA). The
intensity was given in terms of relative pixel density for each
band normalized to band of beta-actin. The intensity of the

bands was measured using software UNSCAN-IT automated
digital system version {Orem, USA}.

2.8. Statistical analysis

The skin tumor incidence was analyzed by one-way analysis of
variance (ANOVA) test in untreated control and treated groups,
p<0.05 value was considered as significant. Protein expression
data for untreated control and treated groups are expressed as
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the mean =SD of 3 replicate gels for fold changes of normalized
spot velumes. For the statistical analysis of data, Student-t-test
was used and p<0.05 was considered as significant Hierarchical
clustering analysis using Ward's minimum variance was
performed by NCSS software (Kaysville, Utah, USA}.

3. Results
3.1, Carcinogenic potential of glyphosate

Carcinogenic potential of glyphosate was recorded in 2-stage
mouse skin tumor initiation—-promotion protocol when tested as
a tumor promoter, however, glyphosate exposure failed to
provoke neoplastic development when tested as tumor initiator
or complete carcinogen. In this study, conducted to evaluate
tumor promoting potential of glyphosate, onset of tumorigen-
esis was recorded in the animals of positive control group [l ie.
DMBA+TPA after 52 days of promotion. All the animals of this
group attained tumorigenesis by the end of 112days of
promotion. However, tumor development started in the ani-
mals of group VIII {DMBA+glyphosate} after 130 days of
promotion and at the time of termination of experiment ie.
32 weeks, 40% of the animals developed tumors on the dorsal
region of the skin (Fig. 14, Table 1). The total number of tumors
in group III was 156 while in group VIII it was 23. No tumor
development was observed in the animals of groups L I, Viand
VI during the entire period of study. Similarly, the average
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Fig. 1 - Tumor promoting effect of glyphosate in 2-stage mouse skin model of carcinogenesis. Tumor data is represented as
{A) y-axis showing the percentage of mice with tumors and x-axis showing the weeks of treatment; (B} y-axis showing the
total number of tumors and x-axis showing the weeks of treatment; {C} y-axis showing the average no. of tumors/mouse and
x-axnis showing the treatment; (D) y-axis showing the average volume of tumors per mouse {mm”} and x-axis showing the

treatment. The values obtained in {C) and {D} are encountered at the end point of study duration i.e. 32 weeks.
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section.

number of tumors was 7.8+ 1.1 in group IiI, however, in group
VL itwas 2.8:0.9 {Fig. 1C; Table 1}. These tumors were initiated
as a minute wart like growth, which progressed during the
course of experiment and average tumor volume was 964«
5.1 mm’ in group 1 and 26.2+4.8 mm” in group VI (Fig, 1D;
Table 1). These results clearly indicate significant tumor
promoting potential of glyphosate in mouse skin model of
carcinogenesis.

3.2. Protein expression profile

Using 2-DE, comparisons of differentially expressed proteins
were made in mouse skin following topical treatment with
glyphosate (50 mg/kg b.wt/mouse), TPA (10 ug/mouse) and
DMBA (104 pg/mouse) with untreated mouse skin individually,
using PDQuest 7.4.0 2-1 gel analysis software. Representative
2-DE maps are shown in Fig. 2. Image matching derived from 4
groups showed a total of ~2600 spots. Out of these, 22 spots
were differentially expressed, exhibiting >2 fold change
between values of treated and control animals (Fig. 2). These
spots were excised from the gels and analyzed using MALDI-
TOF/TOF mass spectrometer. PMF from the proteins was
obtzined and the resulting spectra were used to identify the
proteins with the Mascot search program. Protein spots
that appeared more than once, were considered as the
same protein and assigned the same number. These identified
proteins were categorized according to their molecular func-
tions {Table 2), biological functions and subcellular localiza-
tdon (Fig. 3A and B) as referred to SWISS-PROT database.
Protein spot nos. 7 and 18-1, 18-2 were up-regulated and spot
no. 13 was down-regulated by glyphosate and TPA treatment
{Fig. 4). Related fingerprint mass spectra of calcyclin, calgra-
nulin-B and SOD lare shown in Fig, 5.

3.3 Protein expression profile in glyphosate and TPA-
treated mouse skin

Substantially common and differentially expressed protein
spots among glyphosate and TPA-treated skin tissues were
quantitatively analyzed individually. Comparison between
the gels of glyphosate and TPA revealed that 13 specific
proteins spots (1,2, 3,6-1,6-2,7,8,11,12, 13,15, 18-1, and 18-2)

from a total of 22 spots were showing the similar expression
pattern. Among the selected and identified proteins with
statistically significant altered expression (p<0.05), we fo-
cused on the proteins involved in apoptosis and growth-
inhibition, anti-oxidation, energy metabolism, angiogenesis,
calcium binding and protein biosynthesis processes. These
proteins are translation elongation factor eEF-1 alpha chain
{eEF1A1), carbonic anhydrase 3 (CA III}, annexin II, calcyclin,
fab fragment of anti-VEGF antibody, peroxiredoxin-2 (PRX II},
superoxide dismutase [Cu-Zn] (SOD 1}, stefin A3 and calgra-
nulin-B {Fig. 6, Table 3}.

3.4. Protein expression profile in glyphosate and DMEBA
treated mouse skin

Among the 22 differentially expressed protein spots, 4
specific spots (1, 3, 11, and 12} were showing the similar
expression pattern between the gels of glyphosate and
DMBA treated skin tissues. These proteins are eEF1A1, CA
itl, fab fragment of anti-VEGF antibody and PRX II (Fig. 6,
Table 3).

3.5.  Cluster analysis of differentially expressed proteins in
control, glyphosate, TPA and DMBA treated mouse skin

To understand the carcinogenic activity of glyphosate in
mouse skin based on the level of protein expression
information generated on 2-DE gels hierarchical cluster
analysis was applied. The analysis facilitated the visualiza-
tion of groupings based on the protein expression changes,
potentially showing the relationship between glyphosate
and TPA, which further lends support to their tumor pro-
moting activity. A hierarchical clustering map is generated
with the differentially expressed protein spots. The analysis
showed 2 major clusters, one cluster includes TPA and
glyphosate, where majority of the altered protein expression
was recorded and the other cluster includes DMBA and
control having comparatively low number of altered proteins
{Fig. 7). Moreover, calcyclin and calgranulin-B were present
only in the cluster of glyphosate and TPA whereas SOD 1 is
higher in DMBA and control cluster in comparison to other
cluster,
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Fig. 2 ~ Representative 2-DE maps of conirol and treated groups. A. Untreated control; B. Glyphosate; C. TPA; D. DMBA. The pH
gradient is indicated on the top of the gels horizontally, and migration positions of molecular weight markers are indicated on
vertical axis. Identified 22 protein spots, selected by quantitative analysis of respective groups are indicated by arrows and

labeled as 1 to 19 {details are given in Material and methods section). Repeated spots (albumin and calgranulin-B) identified as

same protein are assigned same number.

3.6. Immunoblot verification of caleyclin, calgranulin-B
and S0D 1

Western blotting showed that the expression of calcyclin and
calgranulin-B were significantly increased and that of SOD 1
decreased in the glyphosate and TPA-treated groups only as
compared with respective control and DMBA, and the ex-
pression patterns of the selected proteins were consistent
with the results obtained in 2-DE image analysis (Fig. 8).

4, Discussion

Considering the uses of glyphosate throughout the world,
genotoxic/carcinogenic risk associated with its uses needs to
be addressed urgently. In the present study, using conven-
tional 2-stage initiation-promotion protocol [24] and proteo-

mic application in animal bioassay for carcinogenicity, we
attempted to provide insight into whether glyphosate can
induce neoplastic changes.

Results of the animal carcinogenicity bicassay showed that
topical application of glyphosate was capable of promoting
DMBA-initiated mouse skin cells. However, glyphosate failed to
provoke tumorigenesis when tested for initiating and complete
carcinogenic activity in mouse skin. The tumor promoting prop-
erty of glyphosate, as observed in the present study, is in con-
sistency with previous reports, where glyphosate is reported to
induce cell proliferation and interfere with cell cycle regulation
{26,27]. These results confinmned that glyphosate has tumor pro-
moting activity. Since glyphosate possesses only tumor pro-
moting activity, and not tumor initiating, therefore, it failed to
induce tumorigenesis when tested for complete carcinogenic
activity.

Mammalian skin cells are continuously exposed to a
variety of environmental stresses, each of which may result
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peptides
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PMr (kDa)  pl "

1 Franslation elongation factor ebi-1 EF-1A
aipha chain/protein binding, GIP binding

2 ig gamima-Zb chaim C region/antizgen binding IGHG

3 Carbonic anhydrase Ul/pH balance CAIL

4 NID

5 Actin gamma/ATP binding, protein binding ACTEL

61 Albumin {fragmentyprotein binding, toxin binding . ALB

&7 Albumin {fragmenty/protein binding, rozin binding ALB

&3 Albumin {fragmenty/protein binding, rozin binding  ALB

7 Calcyclin/calcium don binding 510046

8 Annexin Wealcium ion binding BNEA2

9 Heterogenecous nuclear ribonucleoprotein HNEEM
Minucleic-acid binding

16 Keratin Kbiab/intermediate filament organization Kpi7s

11 Fab frapment of anti-VEGE antibody/angiogenesis  VEGE

12 Peroziredozin-2/anti-oxidant activity PRDX2

13 Superozide dismutaze [Cu-Zol/anti-oxidant activity SOD1

14 Keratin, type 1l cytoskeletal 64/intermeadiate KRT64
filament organization

15 Stefin A3 protein/cystaine protease inhibitor STEAZ

16 Rplil protein/ribosome structure BPL30

7. WD

18-1  Calgranulin-B/calcium lon binding 510049

182 Calgranudin B/caleiiun lon binding 5100439

19 NID

{% sequence coverage)

134 S0%70 916/88  PI0ige 5 (8)
53 450/650  61/86  POISE? 3019
90 29550 697/90  PISDIS 5(39)
98 4v5/anD 53155 PeRI0 6 (20}

146 249/780 S48/56 PO7ioa 14 (47)

108 2421175 548500 PO774 54
61 7472/780 548/61 POI7a4 104
75 104/25 S3/52  PLAOSY 5 {30)

161 38817 75361 POIESE 6015
50 778107  B&30 QUEODL 4(5)
91 861/BD 86678 QAIETH 33

195 235/50 63587 1ML 3023
s 52/52 oelizL 2013
65 1595/30 60365 PO 2028

118 59557 Apass psoads 2(3)
92 1147 628/63 0497 10 (81)
65 128/55 974/67  OSPRI 103

147 130/12 67375 P3RS 3 (24

305 13042 67376 PuTS 8 (46

Proteins with > 2 fold changes (either increass or decrease) are included in this table. *NID = Notidentified, "y — Theoretical/observed molecular
weight in Daltons, and “pl— isosiectric point values weare provided with the miass spectromstry data from The Centre for Genomic Application,

Observed Mz and pl-values were estimated from the molecular weight marker run wi

each gel

in specific compensatory changes in protein expression that
can be assessed through proteomic analysis {15]. Recently,
toxicoproteomics is being exploited for the discovery of
biomarkers and organ specific toxicity/carcinogenicity signa-
tures {20,21]. Here we used, proteomic analysis of mouse skin
which offers a unique opportunity to study differentially
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16% {3)

expressed proteins following topical exposure. Short term
topical exposure of DMBA is well reported to form DNA
adducts in mouse skin {28]. About ~2600 protein spots were
generated in mouse skin among control and different
freatmnent groups. Among them, 22 differentially expressed
proteins were exhibiting »2 fold change between treated and

(B)
Apoptosis
16% (3
. & Angiogenesis
g 5% {1)

& lmmunity
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Fig. 3 - Pie charts showing distribution of the 22 identified proteins in mouse skin according to their (4) subcellular localization
and (B) biclogical process on the basis of infermation through SWIS5-PROT database. Numbers in parentheses are the values of

differentially expressed proteins. “NID =Not identified.
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-

Calgranulin-B {Spot no. 18-1,18-2)

Fig. 4 ~ Zoomed images of 2-DE gel regions showing significantly (p <0.05} up-regulated and down-regulated protein spots 7{calcyclin,

13{80D 1), 18-1 and 18-2(calgranulin-B) of respective groups {(A-D).

control tissues. Out of these, eEF1A1, CA I, annexin II,
caleyclin, fab fragment of anti-VEGF antibody, PRX I, SOD 1,
stefin A2 and celgranulin-B appeared to be of particular
significance, as they were observed to be similar in terms of
expression pattern in glyphosate and TPA-treated skin tissues
(Fig 6).

The expression levels of eEF1A1, CA Il and fab fragment of
anti-VEGF antibody were markedly up-regulated following
glyphosate and TPA freatment (Fig. 6). eEF1A1, the cofactor of
eukaryotic protein synthesis is responsible for binding ami-
noacyl-tRNA to the ribosome during polypeptide elongation

and its increased expression is directly proportionate to
cellular proliferation {29, oncogenic transformation {20},
apoptosis {31}, and delayed cell senescence {3Z]. Increased
amount of translation elongation factor-2 following exposure
with TPA, a well known tumor promoter is reported [33]. CA I
is a cytoplasmic enzyme known to play an important role in
the cellular response to oxidative stress which in tum can
mediate apoptosis {34]. Overexpression of CA I protects the
cells from hydrogen peroxide-induced apoptosis {35]. Spot 11,
identified as a fab fragment of anti-VEGF antibody is a
breakdown fragment of VEGF, L-chain, and can be correlated

Fig. 5 ~ Peptide mass fingerprints of the mixture of tryptic peptides derived from {4} calcyclin, spot 7 and (B} calgranulin-B, spot
18-1 (C) 80D 1, spot 13, Details are given in Materials and methods section.
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Fig. 6 ~ Changes in expression levels of the 9 different proteins that were affected by glyphosate, TPA and DMBA. Values are
expressed as fold changes of the control or untreated values, indicated by the horizontal conirol level line. Values represent
mean = 5D of 3 sets of experiments. *: Significanily up-regulated protein {p <0.05). *: Significantly down-regulated protein (p<0.05).

with the tumor promoting activity of test substances, as VEGF
is a highly specific angiogenic factor that has been implicated
in the angiogenesis, a prerequisite for neoplastic growth

Table 3 - Fold changes of differentially expressed proteins
get altered by glyphosate, TPA and DMBA with respect to
untreated group (p<0.05).

Spot Protein name
no.

Fold changes
Glyphosate TPA DMBA

nslation elongation factor +279 4267
ebf-1 alpha chain {efF1AL)
Carbaonic anhydrase 11{CA 1)
Caleyclin

Anpexin II

Fab fragment of anti- VEGE

4372
+32.20

+2.81

antibody
Peroxiredoxin-2 (PRX 1)
Superozide dismutase w497
[Cu-Zn] (50D 4
Stefin A3
181 Calgranulin B
18:2  Calgianulin:B

+2.73

+2.29
+9.52
+9.34

Data represents mean+5D of 3 experiments. {+) Indicates up-
tegulation, whereas () indicates down-reguiation by respective
treatments. "n.d. indicates proteing that were not detected For the
clarity of the results here we mentioned calgranulin & (18-2)
separately but it is conzidered as a single protein.

{36,37]. A number of studies have the role of angiogenesis in
tumor growth {38,39].

Stefin A3 is known to play a role in skin growth and can be
induced by TPA, leading to kerastinocyte differentiation and
proliferation {40,41]. Annexin II, a Ca?" and phospholipid-
binding protein is induced in various transformed cells and
skin disorders [42-44]. Studies also showed up-regulated
annexin Il in a number of human cancers [45,46]. Thus up-
regulation of annexin I by TPA and glyphosate is in consistency
with its reported role in skin malignancies. PRX 11, a novel group
of peroxidases containing high anti-oxidant efficiency and
which can also have a role in cell differentiation and apoptosis,
was over-expressed in response to TPA, DMBA and glyphosate
{Fig. 6, Table 3) {47]. PRX II not only protects the cells from
oxidative damage caused by hydrogen peroxide, but can also
endow cancer cells with resistance to both hydrogen peroxide
and cisplatin towards radic-resistance {48]. Overexpression of
PRY ITin few cancers suggests that PRX has a proliferative effect
and can induce cellular proliferation [49,50].

SOD1 provides a protective response against reactive
oxygen intermediates and its over-expression level is accom-
panied by increased activity of anti-oxidant enzymes, namely,
catalase, glutathione reductase, and glutathione. The sup-
pression of skin carcinogen induced apoptosis, suggesting a
combinatorial role in protecting skin cells from oxidative
stress [51]. Thus down-regulation of SOD1, as observed in
response to glyphosate and TPA exposure can potentiate
process of tumor promotion (Fig. &, Table 3).

MONGLY03045844



TOURNAL QF PRO

TEOMI

CS73(2010) 951~ 861

964

Amournt
17377.90
953780
B524.47
2129.62

identified Proteing

0.004

Groups

=
=
=
£
=
<X

Siefin AZ protain

Fab fragrosnt snti-vegh sntibody
ig gamma-2b chain C region

bed
Baf
4
2
@
21
g
E
2
=
i3
b=
k<3
5
&
&

Transtation elongation factor eEF-1 alpha chain

Calgranudin-B

TRA

ND

& £ D%zaygg o
3 B = 7 e = &
a w8 & 5=

2 28 :2%¢c 23
& o o & 5 5
& OE £ 5 % [ S
gU a:‘;:,ﬁf ;:E..g
% g £ 2 R
= &

o X 8 < & %
& e

S s =

- 23

5 -

G =

£

=

IS

3

X

Haterogensous nuciear shonucleoprotain b

Fig. 7 - Two-dimensional hierarchical clustering map generated using identified protein expressions patterns induced by
control, glyphosate, TPA and DMBA groups. Clusters were generated with normalized volumes of the differentially expressed
protein spots. Each column represents an individual protein and each row represents an individual group.

Interestingly, S100A6 (calcyclin) and S100A9 {calgranulin-B)
were expressed only in glyphosate and TPA-treated skin.
These proteins are implicated in various key biclogical
processes like cell cycle progression, differentiation, cencer
development and metastasis {52]. Caleyclin, one of the two
3100 proteins, was up-regulated by glyphosate (2.48-fold) and
TEA (2.20-fold) in comparison to controls {Table 3). The $10046
protein, in particular, is a well-established marker of melano-
ma cells in which its level correlates with tumor invasiveness
and poor prognosis {53]. Several reports showed that S100A6
expression was increased in cancer {54,55}. Similarly, another
protein calgranulin-B, was also up-regulated in the skin of
glyphosate (9.52-fold) and TPA (7.61-fold) animals as com-
pared to DMBA and untreated skin (Fig. 6, Table 3). In one of
the studies, TPA is reported to induce calgranulin’s S100A8
and 5100A9 expression in mouse skin {56]. The induced
expression of caleyclin and calgranulin-B by glyphosate and
TPA was further confirmed by results of Western blotting.

Multivariate statistical analysis, such as hierarchical clus-
tering, is one of the most popular methods to analyze large-
scale gene expression data. There are few previous reports
which have used this analysis for studying protein expres-

sion {22,57]. In this study, we applied 2-dimensional hierar-
chical clustering analysis to the changes of normalized
significant differentially expressed protein spot volumes on
respective 2-DE gels. This clustering analysis using 2-DE gel
information alsc confirmed resemblance between tumor
promoting activities of glyphosate and TPA. Thus this kind
of multivariate statistical analysis using protein pattern
expression may becorme widely applicable for primary screen-
ing of carcinogenicity for industrial and environmental
pollutants.

Levels of the protein expression provide confirmatory
evidence that expression of calcyclin, calgranulin-B and 50D
1 were altered by glyphosate and TPA treatment. Thus, from
the reported studies and from our results, showing up-
regulation of both calcyclin and calgranulin-B and down-
regulation of SOD 1 by single exposure with TPA and
glyphosate on mouse skin, it became clear that these proteins
are involved in carcinogenesis and can be used as potential
early biomarkers for skin carcinogenesis.

In summary, the 22 identified protein spots were expressed
in mouse skin within 24 h following exposure to glyphosate,
TPA and DMBA as proteomic signatures involved in
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Fig. 8 - (A} Western blots showing expression of calcyclin, calgranulin-B and 30D 1 among control and treated groups. Equal
loading of the samples was evaluated by reprobing the membranes with beta-actin antibody. * indicates significant difference,
p<0.05. (B) Quantitative fold change, calculated with respect to control on the basis of pixel density measured by UNSCAN-IT

software,

carcinogenic process. Out of these 22 proteins, 9 specific
selected proteins are functionally related to apoptosis and
growth-inhibition, anti-oxidation, energy metabolism, angio-
genesis, calcium binding and protein biosynthesis processes
with same expression profiles in glyphosate and TPA-treated
animals. Among them, calcyclin, calgranulin-B and SOD 1
were identified to be closely associated with tumor promoting
activity of glyphosate treatment therefore; their increased
levels may be useful as biomarkers for tumor promotion. This
study validates and consolidates the results of carcinogenicity
data, showing that glyphosate has tumor promoting proper-
ties in mouse skin. In addition to providing an important
framework, proteomnic investigation serves as the starting
point to develop a potential biomarker against pesticide
induced carcinogenicity.
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