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I. Background and Qualifications 

I currently serve as Medical Director and Clinical Executive for Research and 

Therapeutic Technologies at Cortica Healthcare, an organization which provides comprehensive 

assessment and therapeutic services for children with autism and other neurodevelopmental 

differences. I am also a member of the Neurology staff at Children’s Hospital Los Angeles and 

an affiliate member of the Neurology staff at Rady Children’s Hospital in San Diego.  

I received my undergraduate degree in Psychology and Biology, summa cum laude, in 

2000 from Harvard College in Cambridge, Massachusetts. I subsequently completed a medical 

degree at Harvard Medical School and a Ph.D. in Psychology (Cognition, Brain, and Behavior) 

from Harvard University, both in 2008. After receiving my medical degree, I completed 

internship and residency in pediatric medicine at Boston Children’s Hospital, followed by 

residency in neurology and child neurology at Massachusetts General Hospital. During my 

residency I held a position as a postdoctoral fellow in the Cognitive Neuropsychology 

Laboratory in the Department of Psychology at Harvard University, where I contributed to 

research in cognitive development and the neuroanatomical basis of language.  

After residency I received fellowship training in vascular neurology at the University of 

California, San Francisco, and subsequently joined the faculty there as Assistant Professor of 

Neurology from 2013-2017. During that time, I was founding director of the Pediatric Language 

Clinic, a specialized clinic focusing on the evaluation of developmental language disorders and 

dyslexia. My research examined the effects of early injuries to the developing brain on emerging 

language and cognitive abilities in childhood.  

Since 2016 I have collaborated in the design, execution, and interpretation of eTHINK 

(Evolving Treatment of Hemophilia’s Impact on Neurodevelopment, Intelligence and Other 

Cognitive Functions). This nationwide cross-sectional study examines multiple aspects of 

neurodevelopment in children with hemophilia at various ages, including the contribution of 

hemophilia severity and management to the emergence of symptoms of autism and deficits in 

attention and executive function. 
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My current role at Cortica Healthcare is divided between clinical care and research. In 

my clinical capacity as Medical Director I am responsible for the evaluation, treatment, and long-

term follow up of children with neurodevelopmental conditions including autism spectrum 

disorder (ASD), attention deficit-hyperactivity disorder (ADHD), sensory processing disorders, 

speech and language disorders, and disorders of motor function. This includes clinical 

assessment of the underlying causes of cognitive and behavioral symptoms. My research role is 

dedicated to evaluating the efficacy of novel treatment paradigms for symptoms of these 

disorders. 

To date, I have been an author of 30 peer-reviewed publications, most of which focus on 

the neurobiology of language. I am also the author of the monograph “Evaluation of learning 

difficulty and cognitive delay” for the BMJ Best Practice website. 

II. Charge 

I have been asked to provide my opinions on the clinical understanding of ASD, its 

biological mechanisms, and etiology, with particular emphasis on my experience as clinician and 

researcher in the field of neurodevelopment and cognition. Additionally, I have been asked to 

provide my opinion on whether the neurological effects of exposure to certain heavy metals, 

specifically lead, mercury, and arsenic, correspond with the biological pathways implicated in 

the pathogenesis of autism. This report contains a summary of my analysis and conclusions. I 

reserve the right to amend this report and the analysis and/or conclusions herein in response to 

new information, the opinions of defendants’ expert witnesses, or for any other reason. I also 

reserve the right to add new opinions regarding baby foods that contain lead, arsenic, and 

mercury and their ability to cause ASD or ADHD once this case proceeds to a stage where I will 

have access to information specific to the foods at issue, and whether exposure to heavy metals 

contained in said baby foods was a substantial contributing factor to an individual’s diagnosis of 

ASD, ADHD, or another neurodevelopmental disorder. Finally, I also reserve the right to use 

demonstratives and other visual material – including animations – at any evidentiary hearing or 

trial in support of my opinions and testimony.  
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III. Summary of Opinions 

• Autism is a neurodevelopmental disorder characterized by atypical social communication 

and interaction along with restricted and repetitive patterns of behavior.  

• Symptoms of autism spectrum disorder can be identified in the early developmental 

period. In some cases, the emergence of ASD symptoms between 15-24 months of age 

occurs on a background of apparently typical neurodevelopment.  

• Neurobiological studies of autism suggest that symptoms result from abnormal 

connectivity within brain networks. There is also strong evidence that increased oxidative 

stress and impaired mitochondrial metabolism contribute to nervous system dysfunction 

in individuals with autism. 

• The prevalence of autism has been increasing in recent decades. Some, but not all, of this 

increase is attributable to changes in clinical definitions and surveillance. The increase in 

prevalence not explained by changes in classification is likely attributable to increases in 

risk factors that contribute to the development of autism symptoms. 

• The pathogenesis of autism has a genetic component, but genetic factors cannot account 

fully for variability in the presentation and severity of symptoms. Epigenetic 

mechanisms, environmental risk factors, and gene-environment interactions also 

contribute to the emergence of symptoms. 

• Known environmental risk factors for autism include exogenous agents that affect brain 

network function by altering cellular signaling and neurotransmitter release and/or by 

increasing oxidative stress and inflammation. These effects may occur following 

exposure in utero or within the first 2 years of life. 

• Exposure to heavy metals in the early neurodevelopmental period has been shown in 

epidemiologic studies to correlate with reductions in intelligence, behavioral problems, 

and symptoms of attention deficit-hyperactivity disorder, all of which constitute cognitive 

processes that contribute to core symptoms of ASD. 

• The mechanisms by which heavy metals affect neuronal function and development in 
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vivo and in vitro overlap to a significant degree with the biological pathways implicated 

in the pathogenesis of ASD.  

IV. Prior Expert Testimony and Compensation        

In the past four years I have testified as an expert witness in the following cases: 

Pelletier v. HHS; Huddleston v. Fiorentino, et al.; Mendoza Alcala v. Ghodisan, et al.; Marshall 

v. Ghaemmaghami; Camargo v. Ricci, et al.; Gerard v. Freeman, et al.; McEahern v. CVS 

Pharmacy; Stopper v. IHC Health; Bryce Kao Yeh v. Yuk Fan Chao, et al.; Martin v. Kaiser 

Permanente, et al.; Acosta v. UJ Peoria; Tompkins v. Hoag Hospital Newport Beach, et al.; 

Jordan v. Garg; Burman v. Talwar; Jones v. Antelope Valley; Fredette v. Dignity Healthcare. 

I am being compensated for my time at a rate of $500/hr for record/literature review; 

$750/hr for deposition testimony; and $750/hr for trial testimony.  

V. Methodology 

I have approached this project using the methods, procedures, and techniques typically 

used by experts in my field. In reaching the opinions contained in this report I am relying upon 

my ten plus years of clinical experience in diagnosing and treating individuals with ASD and 

related neurodevelopmental differences, clinical and research experience in understanding the 

biological pathogenesis of ASD, and clinical and research experience in understanding how 

neurological injuries may produce the core symptoms of ASD. Moreover, to arrive at the 

conclusions in this report, I have reviewed the extensive literature – clinical, epidemiological, 

and toxicological – on ASD, its etiology, biological mechanisms, and risk factors, with a specific 

focus on whether the neurological effect of exposure to the heavy metals lead, mercury and 

arsenic is relevant to understanding the pathogenesis of ASD from a clinical perspective. I 

searched available online databases, such as PubMed and Google Scholar, for literature 

discussing the biological mechanisms of exposure to lead, mercury and arsenic, and the 

pathogenesis of ASD. The use of such databases is common in clinical and research practice. All 

opinions expressed in this report are held to a reasonable degree of scientific certainty. 
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VI. Autism: Clinical Definition and Impact 

Autism or autism spectrum disorder (ASD) is a neurodevelopmental condition 

characterized by core deficits in social communication and behavior. It is important to emphasize 

that the definition of autism is based on the presence of a cluster of psychological and 

developmental symptoms, and not on any specific underlying neurobiological or genetic 

pathology. Clinical symptoms of autism can manifest in a large number of biological conditions 

that affect the early development and connectivity of brain networks.  

Current criteria for the clinical diagnosis of ASD are described in the Diagnostic and 

Statistical Manual of Mental Disorders, 5th Edition (DSM-5), and include the following: 

• Persistent deficits in social communication and interaction (including deficits in social-

emotional reciprocity; nonverbal communicative behaviors; and the ability to develop, 

maintain, and understand relationships). 

• Restricted, repetitive patterns of behavior, interests, or activities (e.g., stereotyped or 

repetitive motor movements, use of objects, or speech; insistence on sameness, inflexible 

adherence to routines, or ritualized patterns of verbal or nonverbal behavior; highly 

restricted, fixated interests that are abnormal in intensity or focus; and hyper- or 

hyporeactivity to sensory input or unusual interest in sensory aspects of the environment). 

[APA 2013]. 

The age at which children present with symptoms of ASD is variable. Clinical definitions 

require that symptoms be present in the early developmental period, to distinguish ASD from 

adult-onset psychiatric conditions such as schizophrenia, which also impact social 

communication and behavior. Some research suggests that symptoms predictive of clinically 

relevant deficits in ASD can emerge as early as 6-18 months of age [Szatmari et al 2016]. In this 

age group, the caregivers or primary care provider may notice delays in speech or language 

development, poor eye contact, or limited interest in socializing.  

By contrast, about one-fourth to one-third of children ultimately diagnosed with ASD 

achieve early cognitive milestones, but experience a plateau or regression of language, 
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communication, and/or social skills between 15 and 24 months of age. In some cases, 

development of social communication skills is typical or even above average prior to plateau or 

regression [Ozonoff et al 2011]. 

To meet clinical criteria for the diagnosis, symptoms of ASD must cause clinically 

significant impairment in social, occupational, or other important areas of functioning (such as 

school). However, the DSM-5 allows that symptoms may not be recognized in situations where 

social demands are limited, or when an individual is able to employ compensatory (masking) 

strategies. Individuals with subtler symptoms of autism may not receive a diagnosis until they 

enter the school system (or later) and may come to attention initially because of co-existing 

symptoms of attention problems or anxiety [McConachie et al 2005].  

Across the spectrum of symptom severity, the lifelong burden of ASD can be 

considerable both from a financial perspective and with respect to quality of life. Individuals 

with autism are at higher risk for psychiatric comorbidities, as we will discuss below, but also for 

non-behavioral adverse health outcomes including injuries [Jain et al 2014] and increased 

mortality [Schendel et al 2016, Hirvikoski et al 2016]. There is a substantial impact on quality of 

life, which is independent of age, IQ, and symptom severity [van Heijst & Geurts 2015]. 

It should be noted that the DSM-5 definition of ASD, which was adopted in 2013, differs 

in some respects from the definition in the prior version of the DSM (DSM-IV-TR) [APA 2000] 

and the International Classification of Diseases and Related Health Problems (ICD-10) [WHO 

1992]. These criteria require evidence of abnormal or impaired development in social use of 

language, reciprocal social interaction, or functional or symbolic play prior to the age of 3 years, 

and do not include a criterion explicitly related to disordered sensory processing, which is 

increasingly recognized as a key neurologic feature of autism spectrum disorders. The current 

diagnostic criteria are therefore somewhat broader and include individuals who might previously 

have received the alternative diagnoses of Asperger syndrome or pervasive developmental 

disorder (milder symptoms), or childhood disintegrative disorder (severe symptoms of regression 

in skills). It is therefore expected that estimates of the cost and quality of life impact associated 
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with ASD is likely to increase over time [Leigh et al 2015]. 

VII. Autism: Epidemiology 

The population prevalence of ASD in developed countries is estimated to be around 1.5% 

(Baxter 2015). In the United States, rates of ASD are monitored through screening and 

abstraction of existing health and education records, which suggest a prevalence estimate of 

1.56-1.85% [Maenner et al 2016; Christensen et al 2019; Shaw et al 2020], and through survey 

data collected from parents and caregivers, which give slightly higher estimates of 2.24-2.5% 

[Kogan et al 2018; Zablotsky et al 2019].  

All of these surveillance methods indicate that the prevalence of autism has been 

increasing over time, with an especially marked increase in the past three decades. To some 

extent the apparent increase is explained by changes in case definition or survey wording, 

increased awareness of the diagnosis, and diagnostic substitution—i.e., the assignment of an 

ASD diagnosis to children who might previously have been diagnosed with other developmental 

disorders, learning disorders, or intellectual disability [Williams et al 2006; Fombonne 2009; 

Wing & Potter 2002, Zablotsky et al 2015, Shattuck, 2006]. These effects may have been 

especially pronounced after 2013 as the broader understanding of autism spectrum disorders 

reflected in the DSM-5 began to supplant more restrictive definitions that had been the standard 

in most prior epidemiologic studies. For example, the change in the National Health Interview 

Survey wording in 2014 from “Autism/autism spectrum disorder” to “autism, Asperger’s 

disorder, pervasive developmental disorder, or autism spectrum disorder” correlated with an 

increase in the estimated prevalence of ASD to 2.24% from an annualized prevalence of 1.25% 

based on the 2011-2013 data. At the same time, the prevalence of “other developmental delay” 

declined from 4.84% to 3.57% [Zablotsky et al 2015].  

As might be expected based on the above, much of the increase in estimated prevalence 

of autism can be accounted for by cases at the milder end of the autism spectrum, with less 

marked changes in the prevalence of severe autism with accompanying intellectual disability 

[Lyall et al 2019]. On the other hand, changes in clinical definitions and diagnostic substitution 
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alone are not likely to explain the dramatic increase from an estimated prevalence of 0.045% in 

1966 [Lotter 1966] to 0.6-0.7% in the early 2000s [Fombonne et al 2005; MMWR 2007] to 2.24-

2.5% today.  

A consistent observation across epidemiologic studies is that ASD occurs more 

frequently in males than in females, especially in individuals with less pronounced intellectual 

disability [Fombonne 2005, Fombonne & Tidmarsh 2003]. In part this may be due to under-

diagnosis of ASD in females, but there may also be a biological contribution reflected in brain 

differences related to sex/gender [Lai et al 2017]. Prevalence of autism does not vary 

significantly across racial and socioeconomic groups [Yeargin-Alsopp et al 2003], though these 

factors may affect access to care and resources, including appropriate diagnostic evaluations and 

developmental therapies. 

Up to 70-80% of children with ASD also meet criteria for other, non-ASD developmental 

and psychiatric diagnoses [Simonoff et al 2008, Levy et al 2010, Lai et al 2014, Matson & 

Cervantes 2014], including about 30% with intellectual disability [Christensen et al 2016], 30-

50% with attention deficits and/or hyperactivity, and at least 30% with anxiety. As many as 30% 

of children with ASD have epilepsy [Lukmanji et al 2019, Hyman et al 2020], likely reflecting 

common underlying structural differences in brain development, as I will discuss next. 

VIII. Autism: Neurobiology 

The clinical observation that autism spectrum disorders often co-occur with other 

neurological, cognitive, and behavioral differences is supported by research findings of global 

differences in brain architecture and metabolism in individuals with an autism diagnosis. To put 

this a different way, autism is a cluster of neurocognitive and behavioral symptoms that can 

emerge because of any of several disturbances to the structure and function of the developing 

brain. In contrast to focal brain lesions like stroke and cortical malformations, autism results 

from a more diffuse alteration in the formation of brain networks. It is not surprising, therefore, 

that there is significant overlap between autism and other “network dysfunctions” including 

sensory processing disorders, ADHD, and mood disorders [Henry & Cohen 2019, Diwadkar & 
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Eikhoff 2021]. 

A consistent feature of neuroimaging, electrophysiologic, and histologic studies of autism 

is the finding of atypical neural connectivity [Lai et al 2014, Boddaert et al 2009]. There is often 

an early, abnormal increase in brain surface area and volume between 6 and 24 months of age 

[Hazlett et al 2017] that appears to correlate with an increased number of neurons [Courchesne et 

al 2011] and a failure to refine connections within neural circuits that underly various aspects of 

cognition [Piven et al 2017].  

The process of refinement or “synaptic pruning” during typical development depends on 

the experience of associations between neural activation and sensory inputs; therefore, if either 

the activation of neurons or the ability to process sensory inputs is disrupted, the result will be an 

aberration in network formation. At a cellular level, this type of plasticity depends on the activity 

of the N-methyl-D-aspartate (NMDA) receptor and downstream molecular pathways that are 

known to be disrupted in autism [Piochon et al 2016, Hansel 2018]. 

There is also evidence for abnormal brain metabolism in individuals with autism. Several 

studies have suggested that the neurobiology of autism is associated with increased levels of 

reactive oxygen species, increased lipid peroxidation, and other markers of oxidative stress 

[Bjørklund et al 2020], a process that leads to cellular injury through damage to proteins and 

DNA. Some individuals with ASD have neurobiological signs of mitochondrial dysfunction 

[Goh et al 2014], reflecting an alteration in energy metabolism in brain tissue. 

IX. Autism: Pathogenesis 

The mechanisms leading to communication and behavioral differences in individuals 

with autism are not fully understood. I have just reviewed how early brain development may 

differ in some individuals in ways that lead to the emergence of symptoms of autism. A key 

question, of course, is what drives those differences in brain development. The risk of autism 

may be rooted in genetics, but the expression of these genetic traits is modulated to a sometimes-

significant degree by environmental risk factors and exposures.  
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Genetic Factors. A genetic contribution to ASD etiology is supported by studies 

estimating that the heritability of ASD is between 50-83% [Sandlin et al 2014, Bai et al 2019], 

and the risk of recurrence in siblings may be 3-8 times as high as the population prevalence 

[Sandin et al 2014, Gronborg et al 2013, Ozonoff et al 2011]. Specific rare genetic variants that 

markedly increase the risk of ASD include alterations in genes involved in forming connections 

between brain cells (e.g. SHANK3, CNTN4), controlling cell growth and size (TSC1, TSC2), and 

regulating the expression of other genes (CHD2) [Bourgeron 2015, Pinto et al 2014]. In many 

cases, however, the heritable component of ASD is likely to be polygenic in nature—that is to 

say, it is influenced by the cumulative effect of multiple common genetic variants. At least a few 

of these variants also probably contribute to the pathogenesis of other neurodevelopmental and 

psychiatric disorders, such as ADHD, bipolar disorder, and schizophrenia [Lee et al 2013], 

which occur more frequently in relatives of individuals with a diagnosis of ASD [Xie et al 2019, 

Sullivan et al 2012].  

Parental and Prenatal Risk Factors. At the same time, the heritability of ASD is not 

100%. To put this differently, even monozygotic twins, who share exactly the same genetic 

material, do not always share a diagnosis of ASD, which suggests that environmental or 

experiential factors must play a role in the development of symptoms. Some of these risk factors 

may cause direct structural injury to the developing brain, such as congenital infections. Others 

are thought to exert their influence through epigenetic modification, in which genes are switched 

“on” or “off” early in life while the nervous system is still immature, and thus affect the structure 

of the developing brain without any changes in the primary genetic code. Increased parental age 

[Lee & McGrath 2015] and maternal stress during pregnancy [Van den Bergh et al 2020, 

Babenko et al 2015, Beversdorf et al 2018] have been demonstrated to increase rates of autism in 

children, mediated in part by epigenetic mechanisms.  

Stress may also lead to upregulation of the maternal inflammatory and immune response, 

which in turn has been linked to increased ASD risk through the effects of inflammatory 

mediators on the developing brain[Brown et al 2014, Zerbo et al 2016, Goines et al 2011, Han et 
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al 2021]. Both genetic and epigenetic factors likely increase sensitivity to detrimental effects of 

inflammation, reinforcing the idea that a confluence of environmental exposures can produce or 

exacerbate symptoms of ASD in susceptible individuals [Oldenburg et al 2020].  

Exposure of the developing brain to exogenous chemicals also increases the odds of an 

ASD diagnosis. Historically, maternal use of medications with teratogenic properties has been 

known to lead to increased diagnoses of ASD in children [Newschaffer et al 2007]. More 

recently, large epidemiologic studies have identified increased autism risk associated with 

maternal exposure to antiepileptic medications [Bromley et al 2013, Christensen et al 2013, 

Veiby et al 2013] and beta-2 adrenergic receptor agonists [Croen et al 2011, Gidaya et al 2016], 

which can cross the placenta and can also be transferred through breast milk. Both classes of 

medication affect brain connectivity by altering neuronal excitability in response to endogenous 

neurotransmitters. 

Certain environmental toxicants can also cross the placenta and the blood-brain barrier 

and alter brain development. At least eleven studies have shown that prenatal exposure to 

airborne pollutants is a risk factor for ASD. These include gases such as nitrogen dioxide (NO2) 

and ozone (O3), particulate matter [Volk et al 2013, Kalkbrenner et al 2010], solvents, and metals 

such as, lead, arsenic and mercury (which will be discussed below at greater length) [Windham 

et al 2006]. These have been hypothesized to disrupt brain development both directly (through 

deposition of particles in the developing nervous system) and indirectly (by activating the 

immune system or the oxidative stress response) [Kalkbrenner et al 2016], mechanisms which 

are supported by other studies showing associations between air pollutants and poor birth 

outcomes, immunologic changes, and decreased cognitive abilities [Currie et al 2009, Hansen et 

al 2008]. 

A second mechanism by which chemical exposure can lead to neurodevelopmental 

abnormalities is through disrupting the activity of hormones important for neurodevelopment 

[Schug et al 2015]. For example, maternal exposure to endocrine disrupting chemicals (EDCs), 

including organophosphate and organochloride pesticides, has been associated in several studies 
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with autistic behavior in children [Eskenazi et al 2007, Braun et al 2014, Roberts et al 2007, 

Shelton et al 2014].  

Postnatal Risk Factors. Most of the environmental risk factors for autism that have been 

discussed up to this point involve prenatal exposures to either endogenous or exogenous 

chemicals that influence brain development. However, the development of the brain is not 

complete at the time of delivery, and many processes that are crucial for the development of 

language and social cognition continue to unfold during the first 2 years of postnatal life. 

Postnatal impacts on brain development may in part explain the observation of developmental 

regression between 15-24 months of age in up to one-third of individuals with ASD.  

Among postnatal factors important in the pathogenesis of autism, studies have 

demonstrated that extreme premature birth and low birth weight are significant contributors to 

the risk of autistic behavior in later childhood [Limperopoulos 2009, Agarwal et al 2018]. This 

may be mediated in part by prematurity-related structural brain injury, such as cerebellar and 

germinal matrix hemorrhage, and in part by atypical postnatal development of brain networks 

involved in sensory processing [Rahkonen et al 2015]. 

The emergence of behavioral symptoms in children after 2 years of age may also be 

affected by the availability of certain nutrients crucial for early brain development. For example, 

some studies have demonstrated that supplementation with ω-3 and ω-6 fatty acids reduces 

symptoms of atypical sensory processing and autistic behavior in at least some toddlers with a 

history of premature birth [Boone et al 2017, Keim et al 2018, Boone et al 2019]. Abnormalities 

of the folate metabolic pathway, including autoantibodies to folate receptors, have been 

identified in some children with ASD, and symptoms in these children can be substantially 

improved by treatment with folinic acid [Frye et al 2020].  

Finally, some environmental pollutants linked to increased risk of ASD – including heavy 

metals such as lead, mercury, and arsenic – may have either prenatal or postnatal effects on brain 

development. The Childhood Autism Risks from Genetics and the Environment (CHARGE) 

Study, which established a link between air pollution exposure and autism, modelled pollution 
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exposure by examining residential histories from conception through the child’s most recent 

place of residence [Hertz-Picciotto et al 2006, Volk et al 2013]. Interestingly, one of the findings 

of the CHARGE Study was that exposure air pollution increases susceptibility to autism 

particularly in children with a specific variant in the MET receptor tyrosine kinase (MET) gene, 

pointing to an interaction of genetic and environmental risk factors in the pathogenesis of 

neurodevelopmental disorders [Volk et al 2014]. 

X. Heavy Metals in Neurodevelopment 

It is well-established that early childhood exposure to certain heavy metals, particularly 

lead and mercury, are harmful to the developing nervous system, leading to neurocognitive 

deficits and behavioral problems [Mendola et al 2002]. More recently it has been recognized that 

other metals, including arsenic and manganese, are also toxic to the developing brain 

[Rodríguez-Barranco et al. 2013]. Heavy metals cross the blood-brain barrier, accumulate in the 

central nervous system, and can interfere directly with key cellular proteins.  

Studies demonstrating higher levels of certain heavy metals in children with autism 

spectrum disorders are helpful in establishing an association between heavy metal exposure and 

ASD. But to establish a meaningful understanding of whether elevated metal levels are the cause 

of ASD symptoms or a result of behavioral disturbances in ASD (e.g., ingestion of non-food 

objects that may be contaminated with metals) it is important to consider these studies in 

conjunction with epidemiologic studies of prenatal and early postnatal exposure to heavy metals 

(i.e., exposure prior to ASD diagnosis), as well as basic scientific studies examining the 

biological mechanisms by which heavy metals interfere with the function and development of 

the nervous system. 

As I will discuss further below, it is clear that the biochemical mechanisms by which 

heavy metals affect development overlap with the neurobiological pathways implicated in autism 

spectrum disorders, particularly those important for neuronal signaling and development [Pinto 

et al 2014]. Many heavy metals increase reactive oxygen species and oxidative stress, or disrupt 

mitochondrial energy metabolism, processes implicated in the neurological disturbances 
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associated with ASD.  

Lead. Extremely low levels of chronic lead exposure have been associated with 

detrimental effects on brain development, leading to the dictum that there is no safe threshold for 

childhood lead exposure [Lidsky & Schneider 2003]. Outcomes associated with low levels of 

lead exposure include reduced intelligence [Lamphear et al 2005, Surkan et al 2007], impaired 

executive functioning [Canfield et al 2004], behavioral problems [Braun et al 2018], and ADHD 

[Goodlad et al 2013]. 

Lead readily crosses the blood-brain barrier, and within the central nervous system it can 

disrupt signal transduction cascades through several cellular mechanisms. Of particular relevance 

in the context of autism are the findings that lead impairs signal-dependent release of 

neurotransmitters [Cory-Slechta et al. 1995; Goodlad, et al. 2013], inhibits function of the 

NMDA receptor, and increases background signaling through protein kinase C [Johnston & 

Goldstein, 1998], which together have the effect of reducing the strength of connections between 

neurons at synapses. Enhancing “synaptic noise” during critical periods of brain development 

may permanently disrupt the formation of networks important for sensory processing and other 

cognitive functions by impairing the ability to prune and refine synaptic connections.  

Lead can also uncouple mitochondrial oxidative phosphorylation in the central nervous 

system, leading to a profound impairment of energy metabolism [He et al 2000, Holtzman & Hsu 

1976]; Kim, et al. (2016), and can affect the expression of DNA binding proteins. [Schneider et 

al. 2012].  Such neurotoxic effects have been recognized as plausible mechanisms in the 

pathogenesis of ASD.  [Kim et al. 2016, Smith, et al. 2018].  

Finally, it has been well demonstrated in animal models that lead promotes 

neuroinflammation, including increased release of pro-inflammatory cytokines [Chen et al. 

2019]. As I discussed above, neuroinflammation and attendant immune dysregulation in early 

life are recognized contributors to neurodevelopmental impairments [Oldenburg et al 2020]. 

Mercury. Methylmercury is an organic mercury compound that is thought to be primarily 

responsible for detrimental effects on the central nervous system. Early exposure to 
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methylmercury has been associated with cognitive deficits both in epidemiologic studies 

[Grandjean et al 1997, Grandjean et al 1999] and in experimental animal models [Montgomery et 

al 2008]. 

In part the effects of methylmercury on the nervous system are likely due to an increase 

in reactive oxygen species, which upregulate inflammatory signaling and lead to cell death. We 

have already reviewed evidence that oxidative stress and inflammation are key adverse 

biochemical contributors to the etiology of ASD. Specifically, mercury induces oxidative stress 

by disrupting sulfur chemistry in the brain [Garrecht & Austin 2011]. In the developing brain, 

methylmercury inhibits cell division and migration by blocking the organization of microtubules, 

interfering with receptor-mediated intracellular signaling, and promoting the blockade of 

neuronal calcium channels, thereby disrupting the neuronal communication needed for synaptic 

pruning and the formation of brain networks [Azevedo et al 2012]. Pro-inflammatory and 

neurotoxic effects of mercury have been observed during a wide time window in early 

neurodevelopment, coincident with the period of susceptibility to ASD [Pletz, et al. 2016; 

Garrecht & Austin 2011]. 

Arsenic. Exposure to inorganic arsenic during development is linked to a reduction in 

intelligence and cognitive function, even at levels below current safety recommendations [Tolins 

et al 2014, Farzan et al 2013]. Children exposed to low levels of inorganic arsenic have 

decreased verbal abilities, motor skills, and long-term memory [Rosado et al 2007, Wasserman et 

al 2014, Parvez et al 2011].  

As is the case for lead and mercury, the molecular mechanism of arsenic toxicity is 

probably mediated both by a combination of direct effects on brain cells and neurotransmitters, 

and downstream effects of increased neuroinflammation. Arsenic exposure enhances production 

of reactive oxygen species and oxidative stress [Garza-Lombó et al 2019], leading to increased 

inflammation and cell death. Toxicity of inorganic arsenic has also been associated with changes 

in NMDA receptor expression and dysfunctional glutamate metabolism [Huo et al 2015, Ramos-

Chávez et al 2015, Nelson-Mora et al 2018], as well as abnormal formation of neurons in the 
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frontal cortex [Zhou et al. 2018].   
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