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I. RELEVANT QUALIFICATIONS AND EXPERIENCE

I received my PhD from the Department of Anatomy and Neurobiology at the University

of Rochester, School of Medicine and Dentistry, Rochester, NY in 1985. I pursued an academic 

career, and I presently serve (2013-) as the Harold and Muriel Block Endowed Chair and 

Professor of Molecular Pharmacology; Professor of Neuroscience, Professor of Pediatrics; 

Investigator, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center; 

Member, Nathan Shock Center of Excellence in the Basic Biology of Aging at the Albert 

Einstein College of Medicine, Bronx, NY.  

My Ph.D. focused on potential neurotoxic effects of methylmercury (MeHg). Upon 

completion of my Ph.D. program, I served as a post-doctoral fellow at the University of 

Rochester School of Medicine and Dentistry, Rochester, NY (1985-1987). 

Following completion of this fellowship, I served as an Assistant Professor in the 

Department of Pharmacology and Toxicology at the Albany Medical College, Albany NY. 

During my tenure there (1988-1994), I was promoted to an Associate Professor. I then moved to 

the Bowman Gray School of Medicine, Wake Forest University school of Medicine, Winston 

Salem, NC, where I served as an Associate (1994-1999) and Full Professor (1999-2004) with 

Tenure in the Department of Physiology and Pharmacology. 

From 2004-2013, I served as the Gray E. B. Stahlman Endowed Chair in Neuroscience, 

and Professor, Departments of Pediatrics and Pharmacology, as well as Senior Scientist at the 

Kennedy Center for Research on Human Development, Member of the Vanderbilt Brain 

Institute, Vanderbilt University Medical Center, Nashville, TN. From 2005-2013, I served as the 

Director of Division of Pediatric Toxicology, Department of Pediatrics, Vanderbilt University 

Medical Center, Nashville, TN.  

In addition to my tenured professorship at Albert Einstein College of Medicine (2013-

present), as of 2015, I am a Member of the Institute for Exposomic Research at the Icahn School 

of Medicine at Mount Sinai, New York, NY, and as of 2017, I serve as Adjunct Professor and 

NIEHS P30 Center Member in the Department of Environmental Medicine & Public Health, 
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Lautenberg Laboratory for Environmental Health, Icahn School of Medicine at Mount Sinai, 

New York, NY. 

 As of 2018, I am a European Registered Toxicologist (ERT). The European Register of 

Toxicologists constitutes a list of high-profile toxicologists that meet criteria defined at a 

European level: high standards of education, skills, experience, and professional standing, and 

comply with the requirements defined by EUROTOX and National Societies of Toxicology. 

 My research interest is on the interaction between genetics and the environment in 

triggering brain diseases both during central nervous system development and senescence.  As 

such, in addition to toxicology, I have experience interpreting epidemiological studies during the 

regular course of my research.   

 I have extensive experience in both in vivo and in vitro models of blood-brain barrier and 

neurotoxicity and mechanisms of neurodegeneration. Experimental work in my laboratory uses a 

number of animal models (C. elegans, tissue culture and rodents), and they are designed to: 

• increase the understanding of the genetic influences on health, especially as it relates 

to neurological diseases;  

• increase knowledge of the pathway involved in neurotoxicity as well as the impact of 

these processes on neurodegeneration; 

• develop improved research models for environmental sciences and biology; and 

• use environmental toxicants to understand basic mechanisms of neurobiology.  

My main research work has been continuously funded by the National Institute of 

Environmental Health Science (NIEHS), National Institutes of Health (NIH) with one grant 

(R01) in its 29th consecutive year, and the other in its 20 th consecutive year. 

I have trained numerous pre- and post-doctoral students, have served on multiple PhD 

thesis committees, and was the Director of both a NIEHS Center in Molecular Toxicology (P30) 

and a pre-doctoral and postdoctoral NIEHS Training Grant in Molecular Toxicology (T32) 

during my tenure at Vanderbilt University Medical Center. I have been recognized for teaching, 

having received the Vanderbilt University Medical Center Annual Postdoctoral Mentor of the 
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Year Award in 2008. I have also received in 2012 an honorary Ph.D. from the 4th Military 

Hospital in Xi’an, China.  

I am the past president of the International Neurotoxicology Association (2001), and past 

president of the International Society for Trace Element Research in Humans (2015). I was 

honored to receive the Society of Toxicology (SOT) highest possible peer recognition, the Merit 

Award (2011), as well as the Career Achievement Award from the Metal Specialty Section 

(2016), and the Distinguished Neurotoxicologist Award from the Neurotoxicology Specialty 

Section (2020). I have served as the President of the Academy of Toxicological Sciences (2019 -

2020), and was recently elected as Vice-President-Elect of the Society of Toxicology (2020), an 

approximately 8,000-member society, a professional and scholarly organization of scientists 

from academic institutions, government, and industry representing the great variety of scientists 

who practice toxicology in the US and abroad. 

I am also a Fellow of the American Academy for the Advancement of Science (AAAS). 

AAAS. Fellows are a distinguished cadre of  scientists, engineers and innovators who have been 

recognized for their achievements across disciplines, from research, teaching, and technology to 

administration in academia, industry and government, to excellence in communicating and 

interpreting science to the public. 

I have served, and in some cases chaired, numerous national and international 

committees, including with National Institutes of Health (NIH), US Environmental Protection 

Agency (EPA), Agency for Toxic Substances and Disease Registry (ATSDR) a branch  of The 

Center for Disease Control (CDC), and Department of Defense (DoD), and Health Canada, to 

name a few, and I presently serve on the European Food Safety Authority (EFSA) panel 

committee tasked to address the tolerable upper intake level (UL) for manganese (Mn).  

I presently chair the External Advisory Board of the National Center for Toxicological 

Research (NCTR; Jefferson, AR), a US Food and Drug Administration (FDA) Center. I have 

served on both National Academy of Science (NAS) and the Institute of Medicine (IOM) 

Committees, evaluating health effects associated with exposures experienced during the Gulf 
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War, health effects of copper in drinking water, the safety of anthrax vaccine, and submarine 

evacuation action levels (SEALS), to name a few. As of 2021, I am also a Member of the Board 

of the Federation of American Societies for Experimental Biology (FASEB), an umbrella 

organization of 30 scientific member societies, representing more than 130,000 researchers from 

around the world, with a mission to “advance health and well-being by promoting research and 

education in biological and biomedical sciences through collaborative advocacy and service to 

our societies and their members.” 

  I have served on numerous peer-review editorial boards, such as Neurochemistry 

Research, Food and Chemical Toxicology, Toxicological Sciences, BMC Pharmacology and 

Toxicology, Toxicology Reports, Toxics, and Frontiers in Toxicogenomics, Neurotoxicology (to 

name a few), and have reviewed hundreds of manuscripts for a variety of peer-reviewed journals. 

I am currently also the Co-Editor of Advances in Neurotoxicology. 

 As a neurotoxicologist, I specialize in the assessment of adverse effects of 

pharmaceuticals, non-therapeutic chemicals, and other potential toxins on humans, with 

emphasis on their neurological outcomes. During the course of my career, I have had the unique 

opportunity to have evaluated, consulted on with physicians, and researched the effects of 

chemicals on the nervous system.  

 In addition to teaching, I have been active in the research arena throughout my career, 

focusing on the adverse effects of, or poisoning by, environmental or other toxins. I have 

authored 837 peer-reviewed publications (listed in PubMed), approximately 120 book chapters, 

and hundreds of abstracts, and co-edited several books related to Neurotoxicology. One 

noteworthy book chapter is in the most authoritative toxicology book, Casarett and Doull's 

Toxicology: The Basic Science of Poisons, Eighth Edition, where I have co-authored the 

chapter on Neurotoxicology.  

Based on Google Scholar (https://scholar.google.com/citations?user=XnUMcGcAAAAJ), 

I have been cited more than 48,900 times and my h-index is 103 (a metric for evaluating the 

cumulative impact of an author's scholarly output and performance; a h-index of 103 implies that 

https://scholar.google.com/citations?user=XnUMcGcAAAAJ
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103 of my peer-reviewed manuscripts have been cited a minimum of 103 times). 

 As listed in my Curriculum vitae (see attached), I have lectured extensively, both 

nationally and internationally, on topics in the field of neurotoxicology, including 

neurodevelopmental toxicology.  

 A more detailed recitation of my experience and professional qualifications can be found 

in my Curriculum vitae (see attached).  

II. PRIOR EXPERT TESTIMONY AND COMPENSATION 

In the last four years I have provided expert testimony in the following case: Hoffmann, 

et al., v. Syngenta Crop Protection, LLC, et al. (Circuit Court, Twentieth Judicial Circuit St. 

Clair County, Illinois, No. 7-L-517).  I am being compensated for my time at a rate of $750/hr. 

III. CHARGE 

I have been asked to provide my opinions regarding whether early life exposure to lead, 

arsenic, and mercury can cause ASD, and whether early life exposure to lead can  cause ADHD.  

This report contains a summary of my analysis and conclusions.  I reserve the right to amend this 

report and the analysis and/or conclusions herein in light of new information, the opinions of 

defendants’ expert witnesses, or any other reason.  I also reserve the right add new opinions 

regarding the relationship of baby foods that contain lead, arsenic, and mercury and their ability 

to cause ASD, and baby foods that contain lead and their ability to cause ADHD once this case 

proceeds to a stage where I will have access to information specific to the foods at issue.  Finally, 

I also reserve the right to use demonstratives and other visual material – including animations – 

at any evidentiary hearing or trial in support of my opinions and testimony.  

IV. SUMMARY OF OPINIONS 

  I have reviewed and analyzed the toxicological and epidemiological evidence relevant to 

the question of whether the heavy metals lead, mercury, and arsenic can cause autism spectrum 

disorder (ASD) and whether lead can cause attention deficit hyperactivity disorder (ADHD).  

Following my review and analysis of the data, drawing on my experience and expertise 
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as a scientist, and applying the principles of toxicology, I have formed the following primary 

scientific opinions: 

1. To a reasonable degree of scientific certainty, arsenic, mercury, and lead are well-

established neurotoxins, capable of inflicting permanent brain damage, especially 

in younger children. There are well-established mechanisms for each of these 

metals to not only pass through the blood-brain barrier, but to cause significant 

and permanent disruption to the neuropathways in the human brain. These 

mechanisms of action are even more acute in the developing brain of a young 

child. 

2. To a reasonable degree of scientific certainty, exposure to arsenic, mercury and 

lead can cause ASD in children. This conclusion is supported by a wealth 

epidemiological data and the toxicological profile of these heavy metals.   

3. To a reasonable degree of scientific certainty, exposure to lead can cause ADHD 

in children. This conclusion is supported by a wealth epidemiological data and 

toxicological profile of this heavy metal. 

4. To a reasonable degree of scientific certainty, exposure to arsenic, mercury and 

lead causes ASD through biologically plausible mechanisms. This conclusion is 

supported by a wealth epidemiological data and toxicological profile of these 

heavy metals. 

5. To a reasonable degree of scientific certainty, exposure to lead, causes ADHD 

through biologically plausible mechanisms. This conclusion is supported by a 

wealth of epidemiological data and toxicological profile of this heavy metal.  

6. To a reasonable degree of scientific certainty, exposures to metal mixtures of 

these metals will lead to the additive and synergistic effects of the metals, given 

that they share common toxicological modes-of-action. Thus, neurotoxicity of 

these metals as mixtures will increase the cumulative risk of neurological 

dysfunction.   
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V. BACKGROUND ON TOXICOLOGICAL METHODS 

As a toxicologist, I periodically must apply basic scientific principles to the assessment of 

whether a medication or other substance (natural or anthropogenic) is capable of causing a 

particular adverse health outcome in humans. Before a causal relationship between an exposure 

and a particular outcome can be inferred, there must first be reliable scientific evidence of an 

association between exposure at the dose of concern and the particular outcome of interest. In the 

presence of an established association between a relevant dose and outcome, discussion of a 

biological mechanism becomes sequitur. 

A. THE DOSE MAKES THE POISON 

A classic toxicology maxim is embodied in the phrase “the dose makes the poison” 

credited to Paracelsus (1494-1541), a Swiss physician, alchemist, and philosopher of the German 

Renaissance. The essence of this principle is the recognition that every chemical substance, 

including those that are vital to the sustenance of life (even water and oxygen) and those that we 

come in contact with on a daily basis, can be toxic – “All things are poison, and nothing is 

without poison; the dosage alone makes it so a thing is not a poison.” For every substance, dose 

differentiates between a benign (or even beneficial) effect and a potentially toxic effect.  

 What makes any substance toxic, benign, or beneficial is the dose of the substance 

delivered at the site of action. We cannot assume a linear dose-response relationship: effects seen 

at high doses often do not occur at lower doses. Indeed, many substances have a threshold dose, 

below which no harmful effects are seen, but above which a linear dose-response relationship 

exists. 

 For example, low to moderate doses of (RS)-2-(4-(2-methylpropyl)phenyl)propanoic 

acid—better known as ibuprofen, or by trade names Advil®, Midol®, or Motrin®—are used to 

treat moderate pain, fever, inflammation, menstrual cramps, and various types of arthritis, to 

name a few. However, high doses and/or overuse of ibuprofen can be toxic, potentially damaging 

the digestive system, interfering with hormone homeostasis, and increase the risk of heart attacks 

and stroke (Ershad, 2020). At exceedingly high exposure dose, ibuprofen can even lead to death. 
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Other commonly consumed substances that have starkly different dose responses include 

Tylenol, aspirin, and cough syrup.  

Another example is botulinum toxin, one of the most poisonous biological substances 

known that is produced by the bacterium Clostridium botulinum. The lethal dose for a person by 

the oral route is estimated at 30 ng, by the inhalational route at 0.80 to 0.90 µg, and by the 

intravenous route at 0.09 to 0.15 µg. Botulinum interferes with neural transmission by blocking 

the release of acetylcholine, the principal neurotransmitter at the neuromuscular junction, 

causing muscle paralysis (Nigam and Nigam, 2010; Tighe and Schiavo, 2013). As such, at low 

doses it has been highly efficacious in management of a wide variety of medical conditions, 

especially strabismus and focal dystonias, hemifacial spasm, and various spastic movement 

disorders, headaches, hypersalivation, hyperhidrosis, and some chronic conditions that respond 

only partially to medical treatment. It is therefore always necessary to consider the dose in 

evaluating whether a substance, essential or non-essential for biological functions, is capable of 

inducing adverse health effects.  

 In addition to dose, the toxicity of any substance will depend on the particular chemical 

form of the substance, the route of exposure, and the age/developmental stage of the target organ 

at the time of the exposure. Critically, a toxicologist must also consider the timing and duration 

of exposure, as this will impact not just the magnitude of the effect, but also the mechanism. This 

concept is referred to in toxicology as chronic vs. acute dosing. For example, consuming a liter 

of vodka over the course of several weeks has a different effect on the human body than 

consuming a liter of vodka over the course of an hour. Intoxication and other short–term (acute) 

effects of alcohol are caused largely by temporary, reversible changes in specific receptors and 

associated molecules. With repeated (chronic) alcohol exposure, long–lasting changes occur in 

receptors and in the series of chemical interactions they signal. Drinking too much chronically, in 

turn, can cause chronic physical and mental health issues and contribute to liver damage, 

cardiovascular disease, and multiple types of cancer (Shield et al., 2013; Seitz, et al., 2018). 

 I have given careful consideration to these fundamental toxicological principles in 
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arriving at my conclusions in the case at hand.  

B. METHODOLOGY  

To evaluate the question on the relationship between exposure to heavy metals, 

specifically, arsenic, lead and mercury, and brain dysfunction in the form of ASD or ADHD, I 

reviewed the relevant scientific literature, including animal studies and epidemiological papers. 

I have searched articles on PubMed with keywords such as: mercury, lead, arsenic, 

neurodevelopment, brain, and neurotoxicity. The PubMed database as an engine for the search 

of relevant literature is commonly employed by toxicologists in assessing causality.   

For the animal studies, I have carefully evaluated the quality of the studies by 

addressing statistical methods, appropriateness of dose, soundness of outcome measures, 

and the use of adequate laboratory practices. With respect to the epidemiological studies, I 

considered the benefits and limitations of observational epidemiology in general, as well as 

the strengths and weaknesses of specific epidemiological studies prior to arriving at my 

conclusions.  

As noted in the Reference Manual for Scientific Evidence (3 rd Edn), “both epidemiology 

and toxicology have much to offer in elucidating the causal relationship between chemical 

exposure and disease. These sciences often go hand in hand with assessments of the risks of 

chemical exposure, without artificial distinctions being drawn between them.” Reference 

Manual at 657-68 (emphasis added).  Indeed, as noted below, I have reviewed and considered 

the epidemiology relevant to my toxicological analysis to ensure coherence in my opinions.  As 

the Reference Manual notes: “the two disciplines complement each other, particularly when the 

approaches are iterative.”  Reference Manual at 660. This is routinely done by toxicologists in 

my field in making causality determinations.  However, I am not an epidemiologist, and have 

not elected to use the Bradford Hill factors to assess causality.  My focus, as outlined in this 

report, is on the “scientific information regarding the increased risk of contracting a disease at 

any given dose” and whether the toxicological evidence “contributes to the weight of evidence 

supporting causal inferences by explaining how a [the heavy metal at issue] causes a specific 
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disease through describing metabolic, cellular, and other physiological effects of exposure.” 

Reference Manual at 637.  

In reaching my conclusions, I have relied on the principles I have discussed above, 

and the expertise I have accumulated in studying the neurotoxicity of heavy metals and 

other xenobiotics over >35 years of my career, which has involved the interpretation of 

both toxicological and epidemiological data.  

C. CONSIDERATIONS IN ASSESSING EXPERIMENTAL ANIMAL STUDIES 

A summary of the neurological effects of arsenic, mercury and lead in experimental 

animal studies can be found in extensive reviews by the Agency of Toxic Substances and 

Disease Registry (ATSDR, 1999, ATSDR, 2007, ATSDR 2020). These studies clearly establish 

that arsenic, mercury and lead do harm the nervous system. Nonetheless, while these in vivo 

studies in animal models are informative, they also have limitations that must be carefully 

considered before concluding that effects in animal studies can be extrapolated to humans. 

Indeed, experimental animal studies have often been poor predictors of human responses to 

chemicals or drugs (Aschner, 2020). For example, isotretinoin, more commonly known as 

Accutane, is toxic and causes birth defects in rabbits and monkeys, as well as in humans, but not 

in mice or rats. Corticosteroids are not teratogenic in humans—namely they do not relate to or 

cause developmental malformations—but do have that effect in experimental animals. 

Thalidomide is a teratogen in humans, but not in many experimental animal species. There are 

many reasons why animal studies can be poor predictors of human outcomes, and why they fail 

to translate to human responses. To identify a few such examples: 

• The studies may be poorly designed (length of experiments, methods of randomization, 

distinctions in laboratory techniques) and methodologically inadequate; 

• The study results may not be consistently and carefully replicated and are rarely 

subjected to meta analyses; 

• The tested species or strains differ from humans in metabolic pathways and 

metabolism of the substance being studied; and 
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• Disease manifestation in the animals may be distinct from those encountered in human. 

• Disease effects on the nervous system may be secondary to effects of chromium in other 

organs. 

• Untoward effects on the nervous system are frequently not studied, but they may occur 

secondary to effects on other organs (for example, hypoxic lung injury causes brain 

damage). 

Perhaps most importantly, animal studies often use doses that are far higher than doses 

humans would plausibly encounter under normal dosage or use condition, as is the case above. 

For example, lysolecithin is used in rodents to model demyelination, a hallmark of several 

human diseases including multiple sclerosis (MS), yet lysolecithin is also commonly used in 

beauty products (Hooijmans et al., 2019). Animal studies examining whether arsenic, mercury, 

and lead cause neurotoxicity also typically use doses that are greater than human exposure 

levels, and often a method of exposure (injection) that is not a plausible human exposure 

pathway. Nonetheless, these studies can provide insightful information on the mechanisms 

(such as oxidative stress, mitochondrial damage, etc.) of arsenic, mercury, and lead-induced 

neurotoxicity and transport into the brain, establishing the basic principles that guide their 

accumulation and adverse effects in the brain.  

While extrapolation from animal studies to humans can be inappropriate given the often-

used high doses and general lack of information on blood arsenic, mercury, and lead levels, the 

studies do establish the propensity of these metal ions to readily penetrate and damage the 

nervous system, as explained further below, and it would be improper to disregard the results of 

such studies merely because they use higher doses.    

In evaluating the associations between arsenic, mercury and lead and ASD and the 

association between lead and ADHD, I have given careful consideration to any issues 

surrounding interpretation of the experimental animal literature, and I rely on such data for the 

understanding of the mechanisms of their neurotoxicity, pointing out some of the most prevalent 

modes-of-action in these experimental models.  
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D. CONSIDERATIONS IN ASSESSING IN VITRO STUDIES 

An in vitro study is conducted using components of an organism that have been removed 

from a living organism and are thus studied in a controlled environment that is isolated from the 

complex environment of the intact living organism. These experiments may be performed on 

cells or tissue (for example a brain slice) grown in a petri dish in an artificial culture medium, or 

on cell or tissue homogenates, i.e., a slurry that is generated by mechanical disruption (e.g., 

grinding) that destroys cell-tissue membrane structure.  

 Isolated cells or tissues fail to mimic normal metabolism, which means they may not 

replicate effects in an intact living organism, let alone intact living organisms of different 

species. For example, cells in a living animal may be protected from toxic substances by a 

number of biochemical and physiological defense mechanisms, such as the blood-brain barrier, 

skin, testicular barrier, gastrointestinal tract, liver, antioxidant and immune defenses, among 

others. These physical protective barriers along with detoxification processes are an essential 

part of how our bodies deal with the range of potentially toxic substances to which we are 

exposed on a daily basis.  

 Due to the artificiality of the in vitro environment, the response of tissues or cells to an 

exposure in vitro will very often differ from the response in the intact organism. For example, 

when investigating the potential effect of a substance on brain structure and/or function, it is of 

limited utility to know that the substance investigated will kill neurons in vitro at a particular 

concentration, unless you know the dose that must be administered to a human before the toxic 

concentration can be achieved at the neurons in the brain. This is especially significant with 

regard to the brain, because it is protected from toxic insults by an anatomical barrier called the 

blood-brain barrier, which prevents or hinders the passage of many substances from the blood 

into the brain. In addition, most tissue cultures are composed of a single cell type, perhaps with 

some impurities; hence the reductionist approach of tissue culture negates the cross-talk and 

homeostatic control that is inherent to living organisms and which is essential for metabolism 

and protection.  
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 Because in vitro models eliminate and do not account for these complex defense systems, 

cell responses in vitro may be markedly exaggerated or may be different altogether than those 

encountered in vivo. Thus, while in vitro studies can be informative as to potential mechanisms 

by which an agent may affect cells or tissues, such studies must be analyzed and interpreted with 

consideration of the limitations discussed above.  

V. THE NON-ESSENTIAL METALS ARSENIC, LEAD, AND MERCURY 

READILY CROSS THE BLOOD-BRAIN BARRIER AND ACCUMULATE IN 

THE CENTRAL NERVOUS SYSTEM.  

Arsenic, lead and mercury are non-essential metals with no biological function in humans 

(Tchounwou et al., 2012). Nonetheless, they can be absorbed via various routes, and accumulate 

in various organs. In order to accumulate in the brain tissue per se, metals have to be first 

absorbed from the gastrointestinal tract (assuming exposure via food consumption) into the 

systemic circulation.  The three metals discussed herein are all readily absorbed from the 

gastrointestinal tract, albeit their absorption rates differ. 

Arsenic is well absorbed across the human gastrointestinal tract, with approximately 95% 

absorption (ATSDR, 2007).  

Mercury absorption is in the range of 5-95%, with the highest absorption for organic 

species such as methylmercury and lowest absorption for inorganic mercury (ATSDR, 1999).  

The rate of gastrointestinal absorption for lead is 20–70%, and in children it is even 

higher.  

Several metals (calcium, copper, magnesium, manganese, iron, zinc, cobalt, and 

molybdenum) are essential and required for normal and optimal brain function. They play 

important roles in brain function as catalysts, second messengers, signaling, and gene expression 

regulators, to name a few. However, non-essential metals, such the three metals discussed herein, 

namely arsenic, lead and mercury can also readily accumulate in the brain by utilizing 

transporters localized at the blood-brain barrier. As I noted above, none of these metals is 

deemed essential for any biological function (Tchounwou et al., 2012) 
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Transport of metal ions across the blood-brain barrier is the first and a requisite step in 

regulating their levels and effects in the brain. The blood-brain barrier is composed of layers of 

endothelial cells that are joined together by tight junctions. The layers separate the circulating 

blood from the central nervous system. These tight junctions are absent from peripheral blood 

vessels. The blood-brain barrier is semi-permeable - it allows some materials, but not others to 

cross. The barrier is supposed to protect the central nervous system from potentially harmful 

materials while regulating transport of essential molecules and maintaining a stable environment. 

Under normal conditions, the blood-brain barrier prevents the entry of bacteria, large molecules, 

and most small molecules into the brain (Sweeny et al., 2019). Entry into the brain requires 

molecules to be either small in size, without high electrical charge, or lipid soluble (tending to 

combine with or dissolve in lipids or fats, also called lipophilic). 

 Metal translocation to the brain is strictly controlled and often prevented by the blood-

brain barrier. A series of active or receptor-mediated transport systems inherent to the blood-brain 

barrier vasculature serve to control the transport of metals into and out of the brain, maintaining 

their optimal concentrations. 

However, as explained below, the most pertinent blood-brain barrier transport systems 

for arsenic, mercury, and lead, allow these non-essential metals to cross the blood-brain barrier 

and accumulate in the brain, in many cases, the mechanisms for their excretion are not as 

efficient as those for uptake, or they bind to macromolecules which prevent them from crossing 

back from the brain into the systemic circulation (Branco et al., 2017). Furthermore, the relative 

brain accumulation of these metals in toddlers is likely to be significantly higher than in adults, 

given the absence of fully developed blood-brain barrier. The consequences of such 

accumulation are also far more detrimental in toddlers, given that their brains are undergoing a 

series of dynamic processes related to postnatal brain development, which are absent in the adult 

brain (see below for additional discussion).   

A. ARSENIC

Several studies have shown that arsenic readily crosses the blood-brain barrier and 
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directly affects the central nervous system. The mammalian glucose transporter GLUT1 has been 

postulated to be a major pathway uptake for arsenic across this barrier, contributing to arsenic -

related neurotoxicity (Liu et al., 2006). 

B. MERCURY 

As a consequence of its high affinity for –SH groups, most of the mercury in tissues is 

normally conjugated to water-soluble sulfhydryl-containing molecules, primarily L-cysteine, 

glutathione (GSH), hemoglobin, albumin and other thiol-containing polypeptides. MeHg-L-

cysteine conjugates are structurally analogous to the neutral amino acid L-methionine. L-

methionine is an endogenous substrate, which is transported intracellularly on the L-type large 

neutral amino acid transporter 1 (LAT1). L-methionine has a high-affinity constant for this 

carrier. LAT1 functions as one of the major nutrient transport systems at the blood-brain barrier, 

and is highly expressed in brain capillary endothelial cells. Methylmercury-L-cysteine conjugate 

is a substrate for the neutral amino acid transporter, LAT1, which actively transports MeHg 

across membranes, resulting in mercury accumulation in the brain (Yin et al., 2008).  

C. LEAD 

Lead rapidly enters from the blood into the brain and is transported across the blood-brain 

barrier via an anion exchanger and calcium channels. A mechanism allowing rapid passive 

transport of Pb at the brain endothelium comprising the blood-brain barrier has been 

documented, likely in the form of a hydroxyl complex (PbOH+). In addition, lead uptake into 

brain occurs via active transport by the calcium-ATP-dependent pump (Bradbury and Deane, 

1993). 

In summary, although non-essential, all three metals, arsenic, lead and mercury utilize 

transporters inherent to the blood-brain barrier, and therefore readily accumulate and concentrate 

in the brain.  As explained below, given these metals’ inherently neurotoxic effects, their 

accumulation in the brain poses substantial risks of harm to the neurodevelopment of children.  
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VI. REGULATORY LIMITS AND REFERENCE DOSES FOR HEAVY METALS 

The EPA defines an oral reference dose (RfD) as an estimate, with uncertainty spanning 

perhaps an order of magnitude, of a daily oral exposure to the human population (including 

sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a 

lifetime. In other words, a reference dose (RfD) is defined as an estimate of a daily exposure to 

the human population (including sensitive subpopulations) that is likely to be without an 

appreciable risk of deleterious effects during a lifetime.1 Therefore, exposure to a compound, 

heavy metals in this instance, at a level below the RfD is assumed to be safe, while exposure at 

levels above the RfD is assumed to cause adverse health effects.  The RfD describes the 

exposure conditions that are unlikely to cause health effects, which are typically assumed to have 

a threshold dose above which deleterious health effects would be expected to occur.  

As an example, for inorganic arsenic (IRIS, 2007), the RfD is 0.0003 milligram per 

kilogram of body weight per day (one microgram is one millionth of a gram). The “safe” dose of 

arsenic for any given person is the RfD multiplied by the person’s body weight in kilograms. For 

example, a 60-kilogram (132-pound) woman’s safe daily dose is (0.0003 milligram of arsenic 

per kilogram of body weight per day) x (60 kilograms) = 0.018 milligrams of arsenic.   

The RfD for methylmercury is 0.0001 mg/kg/day based on developmental neurologic 

abnormalities in human infants (IRIS, 1997).2  

For lead toxicity the EPA did not establish a safe exposure limit, and therefore, no RfD 

exists for this metal.  

It is noteworthy that the US Food and Drug Administration (FDA) has set the maximum 

allowable levels in bottled water at 10 ppb for inorganic arsenic. 

Noteworthy is also the fact that for mercury, the US Food and Drug Administration 

(FDA) has set the maximum allowable levels in bottled water at 2 ppb (ECP, 2021).  

 
1 https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-

science/reference-dose. 
2 https://www3.epa.gov/ttn/atw/112nmerc/volume1.pdf 

https://en.wikipedia.org/wiki/Order_of_magnitude
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/reference-dose
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/reference-dose
https://www3.epa.gov/ttn/atw/112nmerc/volume1.pdf
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The US Food and Drug Administration (FDA) has set the maximum allowable levels in 

bottled water at 5 ppb lead.  

However, it must be noted that exposure to certain compounds below the RfD or 

maximum allowable levels does not mean that there is no risk of harm.  As explained below, 

exposure to the metals discussed herein, even at very low levels, has been observed to have an 

adverse effect on pediatric neurodevelopment because children’s developing brains are 

particularly susceptible to the neurotoxic effects of these metals.  That is why many research, 

professional and governmental bodies have argued that, for children, no “safe” level of exposure 

to these metals exists.  For example, in a lead Poisoning Fact Sheet recently published by the 

WHO it is stated “[t]here is no level of exposure to lead that is known to be without harmful 

effects.”3 (emphasis added). Similarly, the US EPA and the Centers for Disease Control and 

Prevention (CDC) “agree that there is no known safe level of lead in a child's blood”4 (emphasis 

added).  

It is further noteworthy that in its list prioritizing substances based on their frequency, 

toxicity, and potential for human exposure, the US Agency of Toxic Substances and Disease 

Registry (ATSDR, a division of the CDC) ranks arsenic as number one among environmental 

substances that pose the most significant potential threat to human health, followed by lead 

(second) and mercury (third).5  

 

 
 

 
3 (https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health) 
4 (https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-

water) 
5 www.atsdr.cdc.gov/spl/index.html#2019spl.  

https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health
https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water
https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water
http://www.atsdr.cdc.gov/spl/index.html#2019spl
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VII. OVERVIEW OF AUTISM SPECTRUM DISORDER (ASD) AND ATTENTION 

DEFICIT HYPERACTIVITY DISORDER (ADHD) 

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by 

altered communication, emotional status, and social interaction. ASD may include reduced 

intelligence scores, social interaction, and memory, deficits in reading and language capabilities, 

along with a myriad of other health issues as summarized by the CDC.6  

Attention Deficit Hyperactivity Disorder (ADHD) is usually first diagnosed in childhood 

and often lasts into adulthood. Children with ADHD may have trouble paying attention, 

controlling impulsive behaviors (may act without thinking about what the result will be), or be 

overly active.7  

VIII. NEUROTOXIC EFFECTS OF ARSENIC, MERCURY AND LEAD 

The following section provides insight to the sequalae of human exposures to each of the 

metals (arsenic, mercury and lead) along with a brief description of their neurotoxic mode of 

action; this is further expanded upon in the “Summary” section.  

I have reviewed in excess of 150 papers addressing the issue at hand. Given the 

toxicological focus of this report and the fact that the majority of the relevant data is in the form 

of epidemiological studies, many of the epidemiological papers are not explicitly discussed in 

this report, although cited in my reference materials.  While some disagreement exists on the role 

of the metals discussed here in the etiology of ASD and ADHD, it is noteworthy that of the over 

150 manuscripts that I have reviewed ~70-80% attest to an association and/or causation between 

exposures to these metals and adverse neurological outcomes, including ASD and ADHD. This 

constitutes a near-consensus within the scientific community. These effects were reported from 

multiple children cohorts around the world, emphasizing that these outcomes are largely 

reflected by exposures per se to these metals, and likely less so by genetic susceptibility.  

Furthermore, the mechanism by which these metals are known to cause neurodevelopmental 

 
6 (https://www.cdc.gov/ncbddd/autism/facts.html). 
7 https://www.cdc.gov/ncbddd/adhd/facts.html). 

https://www.cdc.gov/ncbddd/autism/facts.html
https://www.cdc.gov/ncbddd/adhd/facts.html
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disorders in children further strengthens our understanding of a causal association observed in 

the substantial body of epidemiological literature.  The data, taken in totality, and considered in 

light of our understanding of how these neurotoxic chemicals interact with the human brain 

(modes-of-action) clearly support a causal association between exposure to arsenic, lead and 

mercury and ASD, and exposure to lead and ADHD.  

A. ARSENIC 

Mechanistically, arsenic causes dysfunctional cognitive behaviors, primarily impacting 

synaptic plasticity of neurons in the hippocampus. Arsenic also increases β-amyloid protein, 

which induces the hyperphosphorylation of tau protein resulting in neurodegeneration  

It can also alter the metabolism of assorted neurotransmitters such as monoamines, acetylcholine, 

gamma amino butyric acid (GABA), and glutamate. Its toxic effects are also attributable to 

oxidative stress and reduction in glutathione, glutathione peroxide (GPx) and glutathione 

synthase (GS) activity and elevate the lipid peroxidation, which have been associated with the 

development of ASD. Furthermore, arsenic activates p38 mitogen-activated protein kinase (P38 

MAPK) and c-Jun N-terminal kinase 3 (JNK3), leading to neuronal cell death (Karri et al., 

2016). 

Many epidemiological studies and case reports have established that exposure to 

inorganic arsenic causes brain injury. For example, in adults, acute, high-dose exposures (2 mg 

arsenic/kg/day or above) lead to encephalopathy, characterized by symptoms such as headache, 

lethargy, mental confusion, hallucination, seizures, and coma (summarized in ATSDR, 2007), 

which commonly commences with numbness in the hands and feet, and often encompasses 

sensory and motor nerves, causing muscle weakness. 

Tolins et al. (2014) reviewed the published epidemiological and toxicological literature 

on the developmental neurotoxicity of arsenic, asserting that arsenic is able enter and accumulate 

the developing brain, with ensuing neurotoxic effects. They further note that prenatal and early 

postnatal exposure to arsenic in animals cause reduction in brain weight, reductions in numbers 

of glia and neurons, and alterations in neurotransmitter systems, with the generation of reactive 
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oxygen species (ROS) as a triggering mechanism for such effects, recognized precursors to ASD. 

They further reviewed 15 epidemiological studies (through 2014), corroborating that in humans, 

early life exposure to this toxic metal results in deficits in intelligence and memory, effects that 

may occur at levels of exposure below current safety guidelines. Furthermore, they advance the 

hypothesis (which I will discuss below) that neurocognitive sequalae of arsenic exposure may be 

unmasked later in life and note that concomitant exposures (such as other metals; see below), and 

the timing of exposure may exacerbate developmental neurotoxic outcomes of early life 

exposure to arsenic. They also note that 4 epidemiological studies have failed to show behavioral 

outcomes of arsenic exposure.   

Exposure to arsenic in children has been shown to cause intellectual deficits. For 

example, in a cross-sectional evaluation of intellectual function in 201 children 10 years of age 

whose parents were part of a larger cohort in Bangladesh, Wasserman et al. (2004) showed that 

water arsenic levels were significantly and negatively associated with both Performance and 

Processing speed (measures of neurobehavioral function).  

In another study of 351 children aged 5–15 years from West Bengal, India, von 

Ehrenstein et al. (2007) found significant associations between urinary arsenic concentrations 

and reductions in scores of tests of vocabulary, object assembly, and picture completion. 

Ecological studies in children in Taiwan (Tsai et al. 2003) showed that adolescents exposed to 

low levels of inorganic arsenic (0.0017–0.0018 mg arsenic/kg/day; n=20) in their drinking water 

displayed decreased performance in the switching attention task; children exposed to high 

inorganic levels in their drinking water (0.0034–0.0042 mg arsenic/kg/day; n=29) displayed 

decreased performance in both the switching attention task and in tests aimed to detect deficits in 

memory, when compared to unexposed control children (n=60).  

Similarly, ecological studies in China (Wang et al. 2007) in children (age 8– 12 years) 

found that children whose mean arsenic concentration in the drinking water was 0.190 mg/L had 

a mean IQ score of 95 compared with 101 for children (n=253) with 0.142 mg/L arsenic in the 

water and 105 for control children (n=196) with 0.002 mg/L arsenic in the drinking water, 
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establishing statistically significant differences in IQ scores between the two exposure groups 

and the control group.  Taken together, studies have consistently shown that arsenic exposure 

significantly and negatively effects neurodevelopment in children, as by a highly pronounced 

decrease in Full Scale IQ (FSIQ), specifically, in verbal and performance domains, as well as 

memory. As noted in the ECP (2021), astonishingly, for every 50% increase in arsenic levels, 

there is an approximate 0.4 decline in a child’s IQ. 

A.1 Arsenic and ASD 

The epidemiological data concerning arsenic and the development of ASD and ASD-

associated behaviors is strong.  And, importantly, it is consistent with the toxicological profile of 

arsenic and its effects on the human brain, especially in younger children. 

Wang et al. (2019) carried out a systematic review and combined the data into a meta-

analysis to evaluate the available human evidence on the relationships between arsenic and ASD. 

The authors identified 14 studies on arsenic exposure and their respective associations with ASD, 

with 8 (53.3%) reporting a positive association, and none reporting an inverse association. In a 

follow-up meta-analysis, the authors reported statistically significant higher arsenic 

concentrations in hair and blood of children diagnosed with ASD compared with controls. The 

authors state: “we concluded that there is consistent evidence supporting a positive association 

between early life arsenic exposure and diagnosis of ASD.”   

Long et al. (2019) measured amniotic fluid (AF) levels of endocrine disrupting 

compounds (EDCs) and metals to investigate the possible link between prenatal exposure to 

these compounds and risk for ASD risk. Arsenic was detected in up to 22.7% of the AF samples, 

and the study indicated that prenatal arsenic exposure contributed to the development of 

childhood ASD.  

In a recent study, Fiore et al. (2020) examined children with ASD in Catania, Italy. A 

significant and positive correlation was found between hair metal burden (as well as lead, 

aluminum and arsenic levels) and severity of ASD symptoms, such as social communication 

deficits and repetitive, restrictive behaviors. Similar findings were corroborated in a small study 
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carried out by Filon et al. (2020), where hair analyses revealed that children diagnosed with ASD 

had arsenic and lead toxic overload.  

Doherty at al. (2020), in a prospective pregnancy cohort, investigated associations 

between prenatal exposures to arsenic and neurodevelopmental outcome, reporting that 

exposures in mid- to late- pregnancy were more “impactful” than exposures earlier in pregnancy, 

concluding that “maternal postnatal toenail arsenic was associated with worse scores on the 

BASC-2 Internalizing Problems and Behavioral Symptoms Index”.  This study is insightful for 

the additional reason that it demonstrates the etiological relevance of pre-diagnosis arsenic 

exposure. 

Skogheim et al. (2021) investigated the relationship between maternal levels of toxic 

metals and childhood diagnosis of ASD. They examined 397 ASD cases and 1034 controls in the 

Norwegian Mother, Father and Child Cohort Study. The authors identified positive associations 

between arsenic and ASD (increased risks) in the arsenic second quartile, showing associations 

between arsenic levels during gestation and ASD with negative impacts on neurodevelopment.  

This study, in addition to the study by Long, et al. (2019) discussed above, provides compelling 

evidence for the etiological relevance of arsenic exposure prior to disease onset.   

Studies showing negative associations between arsenic exposure and ASD also exist. For 

example, Skalny et al. (2017) investigated hair trace elements content in 74 children suffering 

from ASD and 74 sex- and age-matched controls divided into two age groups (2-4 and 5-9 

years). The authors note that levels of hair arsenic in children diagnosed with ASD were lower 

compared to matched control. And an ecological study by Dickerson et al. (2016) examining 

ambient arsenic levels across census tracts did not observe an association for ASD prevalence 

across the census tracts. A meta-analysis from 2017 by Saghazadeh and Rezaei found no 

difference in arsenic measurements of hair, urine, and blood between cases and controls.  

However, given that the majority of the epidemiological studies I reviewed have reported 

positive associations between arsenic exposure and ASD, and considering that these effects were 

reported from multiple children cohorts from around the globe, emphasizing that these outcomes 



26 

are largely due to exposures per se and not genetic factors, notwithstanding negative studies, it is 

my opinion to a reasonable degree of scientific certainty that that arsenic exposure is a causal 

agent of ASD. 

B. LEAD 

The literature on the neurobehavioral effects of Pb in children is extensive, and leaves no 

doubt that Pb causes intellectual deficits, and most likely with no threshold (ATSDR, 2020). 

Mechanistically, lead disrupts the nervous system at multiple levels. It can displace metal 

ion co-factors from protein, inhibit enzymes and ion transport, disrupt cell and mitochondrial 

membrane potentials as well as intracellular calcium homeostasis, induce oxidative stress and 

inflammation to name a few; and many of these adverse effects have been implicated in the 

development of both ASD and ADHD. Given that lead can mimic calcium, the latter being 

involved as a cofactor in many cellular processes, it is not surprising that Pb affects numerous 

cell-signaling pathways. One prominent pathway that affected by lead is related to the activation 

of protein kinase C (PKC), a serine/threonine protein kinase involved in many processes 

important for synaptic transmission, such as conductance of ionic channels, the synthesis of 

neurotransmitters, ligand-receptor interactions, and dendritic branching. Notably, the PKC γ-

isoform is one of several calcium-dependent forms and is a likely target for lead neurotoxicity; it 

is neuron-specific and is involved in both learning and memory processes (ATSDR, 2020). In 

addition, Schneider et al. (2013) have shown altered DNA methyltransferase 1 (DNMT1), 

DNMT3a, and methyl-CpG Binding Protein 2 (MeCP2) expression profiles in postnatally lead-

treated rats, suggesting potential epigenetic effects on DNA methylation through dysregulation 

of methyltransferases which are relevant to ASD etiology. Notably, these genes encode enzymes 

that transfer methyl groups to cytosine nucleotides of genomic DNA, thus maintaining 

methylation patterns following DNA replication. Methylation of DNA is an important 

component of mammalian epigenetic gene regulation, and abnormal methylation patterns have 

been shown to be associated with developmental abnormalities such as ASD. Therefore, as noted 

by these authors, lead may affect the dynamic modulation of DNA methylation during brain 
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development including processes such as learning and memory. 

As succinctly summarized in the newly updated Toxicologic Profile of Lead ATSDR 

(2020), in children, consistent evidence of associations between decrements in cognitive and 

neuromotor/ neurosensory function with lead blood levels (PbBs) have been shown at the range 

from ≤10 to >50 μg/dL. The PbB-effect relationship for cognitive effects in children extends well 

below 10 μg/dL, with no evidence for a threshold. It is also noteworthy, several studies that have 

followed children to early adulthood establish associations between childhood Pb exposure (e.g. , 

PbB) and behavioral and neuroanatomical changes, suggesting that exposures in childhood 

persist into adulthood. Other studies have reported on associations between cumulative Pb 

exposures (e.g., bone Pb) and neurological outcomes in adults.  

It is now well accepted that even concentration of PbB ≤10 μg/dL are associated with 

decreased cognitive function, including full scale IQ (FSIQ), learning deficits, attention deficits, 

hyperactivity, autistic behaviors, conduct disorders, and delinquency. Neuromotor and 

neurosensory dysfunction, including gross and fine motor skills, visual-motor integration, and 

hearing threshold have also been documented at PbB ≤10 μg/dL.  

The established effects of lead on neurological function in children are summarized in 

Table 2-28 (ATSDR, 2020). Taken together, these studies establish that lead affects cognitive 

function in children prenatally exposed to PbB ≤10 μg/dL, with similar effects occurring even at 

PbB ≤5 μg/dL. To summarize, neurobehavioral functions associated with PbB ≤10 μg/dL 

include, but are not limited to, decrements in cognitive function (learning and memory), altered 

behavior and mood (e.g., attention, hyperactivity, impulsivity, irritability, delinquency), and 

altered neuromotor and neurosensory function (visual-motor integration, dexterity, postural 

sway, changes in hearing and visual thresholds).  

The cognitive outcome of lead exposure in children that has been most extensively 

studied and compared across studies is full scale IQ. Tests of memory, learning, and  executive 

function have also been utilized to assess cognitive function. For a summary, refer to Table 2 -30, 

ATSDR, 2020). Collectively, these studies establish decrements in cognitive function in 
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association with increasing PbB. Several studies have utilized the Mental Development Index 

(MDI) score metrics from the Bayley Scales of Infant Development (BSID), allowing for 

comparison of results across different studies.  All noted decreases in Mental Development Index 

scores measured from 6 to 36 months in association with increasing prenatal (e.g., maternal) or 

neonatal PbB. Furthermore, several studies have also established the persistence of these effects 

into adulthood.     

Prospective studies initiated at birth have also consistently shown decrements in child full 

scale IQ in association with increased mean PbB <10 μg/dL measured at various stages of 

development (Table 2-30).  

Modeling the effects of PbB of cognition effect, concurrent models predict a decrease of 

6.2 points in FSIQ in children when PbB increases from 1 to 10 μg/dL irrespective of the 

exposure time. Academic performance for children with corresponding PbB data recorded in 

state or local blood Pb registries are also available. For example, Wechsler Intelligence Scales 

for Children-Revised [WISC-R]) in ~5,000 children 6–16 years of age (Lanphear et al., 2000) 

established that increasing PbB levels were significantly associated with decreased performance 

scores in reading in blood strata <5.0, <7.5, and <10 μg/dL.  

Numerous studies have also examined possible associations between neonatal and child 

PbB risk of behaviors that may contribute to learning deficits, including attention deficits, 

hyperactivity, autistic behaviors, conduct disorders, and delinquency (Table 2-30). Prospective 

studies have also provided evidence for associations between neonatal or early childhood PbB 

and other neurobehavioral outcomes, including neonatal behavior, emotional or temperament 

problems, anxiety or depression, sleep disorders, hyperactivity and impulsivity, delinquency, 

and, as discussed below, ASD.   

Although I have only discussed the effects of lead on epigenetic changes, it should be 

noted that similar effects have been also reported for arsenic, and mercury. Therefore, epigenetic 

changes, such as DNA methylation, post translational histone modification and noncoding RNA‐

mediated gene silencing are effects inherent to all these metals, with outcomes consistent with 
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neurodevelopmental disabilities, including ASD (see review, Ijomone et al., 2020). When 

encountered as a mixture, one would further anticipate that these effects would be magnified in 

the course of an infant’s neurodevelopment. 

B.1 Lead and ASD 

A large body of epidemiological data demonstrates the causal association between lead 

exposure and ASD. This data, importantly, is consistent with the toxicological profile of lead, 

and its capacity to injure the human brain, especially in children. 

Kim, et al. (2016), addressed the relationship between low-level lead exposure and 

autistic behaviors in school-age children. In a prospective study, they studied 2,473 Korean 

children aged 7–8 years who had no prior history of developmental disorders, with two follow-

up surveys conducted biennially through the age of 11–12. The authors reported “that blood lead 

concentrations at 7–8 years of age (geometric mean: 1.64 mg/dL), but not at 9–10 and 11–12 

years of age, were associated with more autistic behaviors at 11–12 years of age”, concluding 

that “even low blood lead concentrations at 7–8 years of age are associated with more autistic 

behaviors at 11–12 years of age.” (emphasis added). Given its large scope and prospective design 

(exposure was assessed prior to outcome), this study lends strong support to the etiological 

relevance of lead exposure and the causal association between early life exposure to lead and 

ASD.  

The association between lead exposure and ASD has also been observed in ecological 

data.  Dickerson et al. (2016) addressed associations between lead, mercury, and arsenic and 

(ASD) in 4486 children with ASD residing in 2,489 census tracts in five sites of the Centers for 

Disease Control and Prevention's Autism and Developmental Disabilities Monitoring (ADDM) 

Network. After adjusting for confounding factors, tracts with air concentrations of lead in the 

highest quartile had significantly higher ASD prevalence than tracts with lead concentrations in 

the lowest quartile (prevalence ratio (PR) = 1.36; 95 % CI: 1.18, 1.57). The authors suggest a 

possible association between ambient lead concentrations and ASD prevalence and demonstrate 

that exposure to multiple metals may have synergistic effects on ASD prevalence (see below).  
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Similarly, Roberts, et al. (2013) estimated associations between U.S. Environmental 

Protection Agency-modeled levels of hazardous air pollutants at the time and place of birth and 

ASD in the children of participants in the Nurses' Health Study II (325 cases, 22,101 controls). 

The authors note that perinatal exposures to the highest vs. lowest quintile of lead were 

significantly associated with ASD. 

Arora, et al. (2017) analyzed tooth-matrix biomarkers, a correlate of temporal resolution 

of lead exposure during early development, to characterize levels of this metal in sample of twins 

and its association with ASD. They report significant differences between ASD cases and non-

ASD controls during specific pre- and postnatal periods, with higher lead levels observed over 

the prenatal period and first 5 months postnatally in the ASD children.  This study is particularly 

compelling because, in addition to observing a positive association between higher lead levels 

and ASD, it specifically demonstrates the etiological relevance of early life exposure to lead, 

notwithstanding the shared genetic risk factors of twins.    

In a meta-analysis, Saghazadeh and Rezaei (2017) investigated differences in heavy 

metal measures between patients with ASD and control subjects, using different specimens 

(whole blood, plasma, serum, red cells, hair and urine). Of the 52 studies eligible to be included 

in the systematic review, 48 studies were included in the meta-analyses. Hair lead levels in ASD 

patients were significantly higher than those of control subjects (albeit this was limited to hair 

lead levels of children from developing as opposed to developed countries), and ASD patients 

had higher erythrocyte lead levels as well as higher blood lead levels, establishing a potential 

role for lead in ASD etiology.  

In the same Norwegian Mother Father and Child Cohort Study discussed above 

(Skogheim et al., 2018), non-linear associations between ASD and lead were noted (in addition 

to those described for arsenic above). 

Filon, et al. (2020) analyzed lead concentrations in the hair of children with ASD and  

controls. Hair samples were collected from 30 children diagnosed with ASD (case group) and 30 

children randomly selected from the general population. The authors report that mean lead 
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concentration in the hair of children with ASD were statistically significantly higher than the 

mean concentration of this element in the hair of children without neurological disorders, 

concluding that increased lead burden may play the main role in the etiology of this disorder.  

In another recent study, Fiore et al. (2020) performed a cross-sectional study in Catania to 

determine the relationship between the severity of autism symptoms and cognitive levels with 

heavy metal burdens. The authors note a significant and positive correlation between hair lead 

levels and the severity of ASD symptoms, as characterized by social communication deficits and 

repetitive, restrictive behaviors.  

Frye et al. (2020) addressed neurodevelopmental regression (NDR) as a subtype of ASD, 

analyzing prenatal and early postnatal metal exposures in tooth-matrix biomarkers in 27 ASD 

cases (13 with NDR) and 7 typically-developing (TD) controls. In addition, mitochondrial 

respiration and glycolysis (endpoints of toxicity) were measured in peripheral blood 

mononuclear cells. The authors conclude that “children with ASD and NDR had greater metal-

related disruption of cellular bioenergetics than children with ASD without NDR. Most notably, 

“glycolysis decreased with increased exposure to prenatal lead” (emphasis added), suggesting 

dysregulation of cellular bioenergetics. 

As noted in the ATSDR document (2020), lead concentrations “≤10 µg/dL “may 

contribute to learning deficits, including attention deficits, hyperactivity, autistic behaviors, 

conduct disorders, and delinquency, as well as altered neuromotor and neurosensory function, 

including gross and fine motor skills, visual-motor integration, and hearing threshold”. 

Furthermore, “altered mood and behavior includes hyperactivity, ADHD [see below], decreased 

adaptive skills and emotional functioning, externalizing behaviors, internalizing behaviors, social 

problems, delinquent behavior, impulsive behavior, irritability, autistic behavior, altered sleep, 

and associations between child PbB and adult behavior” (McFarlane et al. (2013).  All of these 

identified symptoms are relevant to the manifestation of ASD. Moreover, a plethora of studies 

have addressed associations between neonatal and child lead blood risk of behaviors that may 

contribute to learning deficits, including autistic behaviors (ATSDR, 2020, see Table 2 -30). 



32 

Not all studies have found a positive association between lead exposure and ASD. 

Abdullah et al. (2012) addressed possible links between lead (and other metals) and ASD, high 

levels of disruptive behavior (HDB), and typically developing (TD) children. The authors noted 

no significant differences in levels lead in children with ASDs compared with TD children. No 

significant differences were noted between children with HDB and TD children.  

Doherty et al. (2020) also investigated the neurodevelopmental effects of prenatal metal 

exposures in the New Hampshire Birth Cohort Study, a prospective birth cohort.  Lead levels (in 

addition to arsenic, see above), were analyzed in maternal prenatal and postnatal toenails and 

infant toenails, and mothers completed the Social Responsiveness Scale, 2nd ed. (SRS-2) and the 

Behavior Assessment System for Children, 2nd ed. (BASC-2) to assess their child’s 

neurobehavior at 3 years. The authors note that lead levels were weakly or inconsistently 

associated with BASC-2 outcomes.  A smaller 2021 study by Wahil et al. (2021) did not observe 

a significant difference in urine lead levels between cases and controls.  

Guo et al. (2019) carried out a systematic review and meta-analysis to explore the 

association of hair lead levels with ASD in children. The authors identified 20 eligible studies 

involving 1,787 participants (941 autistic children and 846 healthy subjects). The authors note no 

statistically significant differences in the levels of hair lead between children with ASD and 

healthy individuals, concluding that there does not appear to be an association between hair lead 

levels with ASD.  And, the authors of the Wang et al. (2019) meta-analysis concluded that the 

evidence for exposure to lead and ASD was “inconsistent”.  However, neither Wang or Guo 

included the large, prospective study of Kim et al. (2016), or the studies of Frye, et al. (2020), 

Fiore, et al. (2020), Filon, et al. (2020) or a recent smaller study Qin and colleagues (2018) 

which found that ASD cases had higher blood lead levels compared with controls, all of which 

support the causal association between exposure to lead and ASD.  Additionally, following the 

performance of sensitivity analyses in Guo et (2019), a positive association was observed in the 

differences of hair lead levels between cases and controls that was statistically significant.  

The preponderance of epidemiological studies has established a causal association between lead 
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exposure in children and ASD. Given the reasons stated above, and notwithstanding the presence 

of some negative data, the literature consistently identifies positive associations between lead 

exposure and ASD. When this epidemiological data is considered within the toxicological 

context of what we know about how lead affects the human brain, especially in younger children, 

it is my opinion to a reasonable degree of scientific certainty that lead exposure is a causal agent 

of ASD. 

B.2 Lead and ADHD 

Even though no safe level of exposure exists for lead, there is evidence of a dose-

response relationship between lead exposure and ADHD.  Geier et al. (2017) relied upon the 

2003–2004 National Health and Nutritional Examination Survey (NHANES) dataset, consisting 

of 2109 people aged 10-19. The authors observed a dose-response relationship between 

increasing blood lead levels and the risk of a reported ADD (per ug/dL, odds ratio 

(OR) = 1.237, p = 0.0227), and the dose-response relationship remained following adjustment for 

potential confounding variables.  Collectively, the ADHD studies indicate that risk of childhood 

attention deficit hyperactivity disorder increases in association with increasing PbB within the 

range of PbB <10 μg/dL (Table 2-30, ATSDR 2020).  

Other studies have examined possible associations between neonatal and child lead and 

neuromotor or neurosensory function (Table 2-30). For example, increased bone lead analyzed at 

age 24 months was shown to be associated with decreased cognitive development (Gomaa et al. 

2002) and behaviors indicative of attention deficit hyperactivity disorder assessed at age 7–15 

years (Xu et al. 2015). In another study (Zhang et al., 2015), the authors investigated ADHD in 

preschool-aged children in Guiyu, an electronic waste (e-waste) recycling town in Guangdong, 

China. The authors (Zhang et al., 2015) reported that 12.8% of children met the criteria for 

ADHD, of which the inattentive, hyperactive/impulsive and combined subtypes were 4.5%, 5.3% 

and 2.9% respectively. Of all children, 28.0% had BLLs ≥ 10 ug/dL and only 1.2% had BCLs ≥ 

2 ug/L, levels conventionally considered high. Either modeled by univariate or multivariable 

analysis, the three ADHD scores (inattentive, hyperactive/impulsive and total scores) calculated 
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from the Parent Rating Scale showed strong positive correlations with BLLs but not with BCLs. 

In addition, high BLLs imparted a 2.4-fold higher risk for ADHD than low BLLs (OR: 2.4 [95% 

CI: 1.1-5.2]). When each of the 18 categories on the Parent Rating Scale was separately 

analyzed, it was found that children with high BLLs had significantly greater risks for positive 

ADHD symptoms than children with low BLLs in 12 of the 18 categories (ORs ranged from 2.1 

[95% CI: 1.1-3.9] to 3.6 [95% CI: 1.7-7.5]). Taken together, this study suggests that 

environmental lead contamination due to e-waste recycling affects neurobehavioral development 

in preschool children in Guiyu, China. 

The literature demonstrating the causal association between lead exposure and ADHD is 

abundant.  I discuss some of the studies from this extensive dataset.  

In a seminal study, Needleman et al. (1979) probed the neuropsychologic effects of 

unidentified childhood exposure to lead. Specifically, the performances of 58 children with high 

and 100 with low dentine lead levels were contrasted. The authors conclude that “children with 

high lead levels scored significantly less well on the Wechsler Intelligence Scale for Children 

(Revised) than those with low lead levels”, and their poorer performance was also evident in 

other “verbal subtests, on three other measures of auditory or speech processing and on a 

measure of attention”. None of these differences could be accounted for by 39 other variables 

studied. Significantly, the “frequency of non-adaptive classroom behavior increased in a dose-

related fashion to dentine lead level”. The authors conclude that “lead exposure, at doses below 

those producing symptoms severe enough to be diagnosed clinically appears to be associated 

with neuropsychologic deficits that may interfere with classroom performance.” (emphasis 

added).  

Tuthill et al. (1996) addressed the relationship between hair lead levels of children and 

their attention-deficit behaviors in the classroom, showing a striking dose-response relationship 

between levels of lead and negative teacher ratings which remained significant after controlling 

for age, ethnicity, gender, and socioeconomic status. The authors reported an even stronger 

relationship between physician-diagnosed ADHD and hair lead in the same cohort of children.  
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Wang et al. (2008) investigated the association between ADHD and blood lead levels in 

Chinese children, adjusting for known ADHD risk factors and potential confounding variables. 

The study included 630 ADHD cases and 630 non-ADHD controls 4-12 years of age. The 

authors noted a significant difference in blood lead levels between ADHD cases and controls 

with ADHD cases being more likely to have been exposed to lead during childhood than the non-

ADHD control subjects. The authors concluded that “ADHD may be an additional deleterious 

outcome of lead exposure during childhood, even when BLLs are < 10 microg/dL.”  

Neugebauer et al. (2015) investigated low-level exposure in relation to children's 

attention. They studied attention of school-aged children (N=117) using a computer-based test 

battery of attention performance (and a parent rating questionnaire of behaviors related to 

ADHD, showing that questionnaire-based ADHD-related behaviors were increased with 

increased lead exposure. 

He et al. (2019) reviewed and meta-analyzed case-control studies to assess the effects of 

blood lead levels in children on ADHD symptoms in seven relevant studies. The authors state 

that “low blood lead levels may be associated with ADHD symptoms in children”, and “even 

children with blood lead levels <3 μg/dL exhibited significant increases in ADHD symptoms.” 

(emphasis added).   

In a study published in 2018, Ji, et al. investigated the prospective associations between 

early childhood lead exposure and subsequent risk of ADHD in childhood and its potential effect 

modifiers. The authors found that 8.9% of the children in the Boston Birth Cohort had elevated 

lead levels (5-10 µg/dL) in early childhood, which was associated with a 66% increased risk of 

ADHD (OR, 1.66; 95% CI, 1.08-2.56). Among boys, the association was significantly stronger 

(OR, 2.49; 95% CI, 1.46-4.26); in girls, the association was largely attenuated (P value for sex-

lead interaction = .017).  As a prospective cohort, the Ji, et al (2018) study reaffirms the causal 

association between lead exposure and ADHD as well as demonstrating the etiological relevance 

of lead exposure prior to ADHD diagnosis.   

In a meta-analysis, Goodlad, et al. (2013) addressed the association between ADHD and 

https://pubmed.ncbi.nlm.nih.gov/?sort=date&size=200&term=Neugebauer+J&cauthor_id=25456149


36 

lead exposure in children and adolescents. They analyzed 33 studies published between 1972 and 

2010 involving 10,232 children and adolescents. The authors report “small to medium 

association between inattention symptoms and lead exposure and a similar association between 

hyperactivity/impulsivity symptoms and lead exposure”. Overall, the authors note a “relation 

between lead exposure and ADHD symptoms was similar in magnitude to the relation between 

lead exposure and decreased IQ and between lead exposure and conduct problems.”  This is 

particularly compelling because, as discussed above, decreased IQ exposure has also been 

consistently associated with low level lead exposure, lending further support to the causal 

association between lead exposure and ADHD.   

Daneshparvar, et al. (2016), in a systematic review which included multiple cohort, case-

control and cross sectional studies, examined the role of lead exposure in children with ADHD  

symptoms. Upon meeting study criteria, 18 articles were selected for the analysis. The authors 

note that blood lead level even at less than 10µg/dL in children were associated with ADHD.  16 

of the 18 studies found a significant association between blood lead levels and ADHD. 

Braun, et al. (2016) examined the association of exposures to tobacco smoke and 

environmental lead with ADHD. They analyzed data from the National Health and Nutrition 

Examination Survey 1999-2002, and of the 4,704 children 4-15 years of age identified, 4.2% 

were diagnosed to have ADHD Using multivariable analysis, the authors show that prenatal 

tobacco exposure and higher blood lead concentration were associated with ADHD. They further 

assert that lead exposure accounts for 290,000 excess cases of ADHD in U.S. children.  

Lee, et al. (2018) addressed the relationships between several heavy metals, 

neurocognitive function, and ADHD symptoms noting that urinary lead levels were positively 

correlated with inattention and hyperactivity/impulsivity symptoms. Donzelli et al. (2019) 

performed a systemic review of the epidemiological literature (including cohort, case-control, 

and cross sectional studies) on the relation between lead exposure and diagnosis of ADHD, 

reporting that of the 17 of the studies that met the inclusion criteria, 12 showed positive 

associations between lead levels and ADHD, and the authors concluded that even low levels of 
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lead exposure increase risk of ADHD.    

More recently, Tartaglione, et al. (2020) reported on the effects of lead on developing 

rodents. Pregnant rats were exposed via the drinking water to lead. Notably, offspring showed 

motor, emotional, and cognitive end points related to altered functioning of the synaptically 

distributed N-methyl-D-Aspartate receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptor in the hippocampus. These authors conclude that “lead 

exposure during development affects glutamatergic receptors distribution at the post-synaptic 

spine” and that these alterations may contribute to behavioral deficits, providing another line of 

evidence for the mechanism by which lead exposure can cause ADHD. 

It is important to note that not all reported studies have established a positive association 

between lead exposure and ADHD. For example, the link between lead exposure and 

neuropsychological disorders and child behavior has been addressed by Abdullah et al. (2012).  

These authors analyzed in prenatal and postnatal enamel regions of deciduous teeth from 

children with disruptive behavior (HDB), and typically developing (TD) children as well as 

ASD, and reported on the absence of significant differences in levels of lead in these children 

compared with matched controls.  And, in Kim, et al. (2010), the authors did not observe a 

significant difference between levels of blood lead between ASD cases and controls in an 

analysis limited to just girls, although the authors noted that the “probability of inattentive and 

hyperactive symptoms was increased with higher blood lead levels in boys.”     

The preponderance of studies, as evidenced by multiple meta-analyses and a prospective 

cohort study, has established a casual association between lead exposure in children and ADHD. 

Indeed, the epidemiological data is directly supported by what we know concerning the 

toxicological effects of lead on the human brain, especially in younger children (discussed 

above).  Given the reasons stated above, and notwithstanding the presence of some negative data 

(indeed a recent systematic analysis conducted by Donzelli et al. (2019) found that most studies 

on lead and ADHD which did not establish a positive association were of poor qua lity, noting 

that the positive data primarily consisted of superior studies) the epidemiological literature 
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consistently identifies positive associations between lead exposure and ADHD. Accordingly, it is 

my opinion to a reasonable degree of scientific certainty that lead exposure is a causal agent of 

ADHD.  

C. MERCURY 

Mechanistically, methylmercury, disrupts/modulates brain cellular Ca2+homeostasis. 

During critical brain developmental windows, methylmercury-induced disruption of 

neurotransmitter has been shown to interfere with cell proliferation and cell fate decisions. 

Furthermore, methylmercury blocks cell migration, and subsequently laminar cortical 

organization in the developing cerebellum (part of the brain). Methylmercury interferes with 

neurotransmitter release, axonal growth, and gene expression and causes hippocampal-dependent 

memory deficits. Exceedingly low nanomolar concentrations of methylmercury affect 

proliferation and differentiation of embryonic stem cells, and reduce neural progenitor cell 

proliferation, expression of genes related to cell cycle regulation, cellular senescence, and 

mitochondrial function (Antunes dos Santos et al., 2016). In addition, low doses/concentrations 

of mercury have been shown to elicit oxidative stress (Aschner et al., 2007). For example, 

mercury induces ROS formation in vivo (rodent cerebellum), and in vitro (isolated rat brain 

synaptosomes), as well as in cerebellar neuronal cultures. Increased levels of reactive oxygen 

species have been noted in mitochondria isolated from MeHg-injected rat brains.  

Most of the available information on methylmercury-induced humans neurotoxicity 

following exposure to organic mercury comes from studies in populations ingesting 

contaminated fish or fungicide-treated grains. Information on the doses at which the adverse 

effects of mercury are diagnosed is frequently limited, given difficulties in retracing prior 

exposures and uncertainties in estimating individual dose levels.  

Select neurodevelopmental effects of methylmercury on brain development have been 

recently summarized by Gustin et al. (2017). The developing brain, both pre- and postnatally is 

considered to be the most sensitive organ and elevated exposure has been shown to affect child 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/prenatal-exposure
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development (Harada, 1995). For example, pre-natal mercury exposure is related to poorer 

estimated IQ (Jacobson et al., 2015). 

Prospective studies in the Faroe Islands have established adverse effects of children's 

recent methylmercury exposure, characterized by hair and blood content, on visuospatial 

memory at 7 years of age, but not with any of the other developmental measures of functional 

domains such as language, attention, or motor skill (Grandjean et al., 2014). Epidemiological 

studies in the Faroe Islands have shown that in utero exposure to methylmercury caused 

decreased motor function, reduced verbal abilities, shortened attention span, altered memory and 

reductions in several other mental functions. Notably, these effects appear permanent and upon 

follow-up of these children at 22 years-of-age, these deficits persist (Debes et al., 2016; 

Landrigan et al., 2020). Further, methylmercury exposure in early life was shown to be 

associated with slowed processing of visual information, decreased IQ, diminished 

comprehension and perceptual reasoning, impaired memory, shortened attention span, and 

increased risk of attention deficit/hyperactivity disorder (ADHD) (Boucher et al., 2011, Boucher 

et al., 2012; Landrigan et al., 2020).  

In the Seychelle Islands, where another extensive neurodevelopmental study has been 

carried out, no adverse associations were observed between children’s hair mercury 

concentrations and neurodevelopment at 5.5 years of age (Myers et al., 2000). However, at a 

follow-up at 19 years of age, hair mercury concentrations were shown to be inversely associated 

with the Kaufman Brief Intelligence Test (van Wijngaarden et al., 2013). As noted by Sagiv et al. 

(2012), “findings underscore the difficulties of balancing the benefits of fish intake with the 

detriments of low-level mercury exposure in developing dietary recommendations in 

pregnancy.” 

C.1 Mercury and ASD 

In one of the earlier studies on the association between heavy metals and ASD, Al-

Ayadhi and collaborators (2005) enrolled 72 autistic children with confirmed diagnosis 

according to E-2 diagnostic criteria for autistic spectrum disorders, and compared their hair 

https://www.sciencedirect.com/science/article/pii/S0160412016307073?via%3Dihub#bb0125
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/sensorimotor-performance
https://www.sciencedirect.com/science/article/pii/S0160412016307073?via%3Dihub#bb0095
https://www.sciencedirect.com/science/article/pii/S0160412016307073?via%3Dihub#bb0180
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/intelligence-test
https://www.sciencedirect.com/science/article/pii/S0160412016307073?via%3Dihub#bb0285
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heavy metal levels (lead, mercury, aluminum, arsenic, barium, cadmium, nickel, antimony and 

strontium) to controls. The authors noted significantly higher levels of toxic heavy metals 

mercury (as well as lead and arsenic children with ASD compared to controls children, 

suggesting “a possible pathophysiological role of heavy metals and trace elements in the genesis 

of symptoms of autism spectrum disorders, such as social withdrawal, eating and sleeping 

disorders.”  

Adams et al. (2007) investigated the level of mercury (as well as lead and zinc) in baby 

teeth of 15 children (aged 6.1 +/- 2.2 yr) with autism spectrum disorder (n = 15, age 6.1 +/- 2.2 

yr) and 11 typically developing children (aged = 7 +/- 1.7 yr). The authors reported that 

“children with autism had significantly (2.1-fold) higher levels of mercury but similar levels of 

lead and similar levels of zinc.”  

Budtz-Jørgensen et al. (2007) applied structural equation modeling to data from a 

prospective study of developmental methylmercury exposure in the Faroe Islands, an Island 

characterized by a population with a relatively high fish consumption. The study adjusted for the 

benefits conferred from maternal fish consumption during pregnancy vis-a-vis increased prenatal 

methylmercury exposure, concluding that the “adverse effects of methylmercury exposure from 

fish and seafood are therefore likely to be underestimated by unadjusted results from 

observational studies, and the extent of this bias will be study dependent.” Analogous to the 

findings by Sagiv et al. (2012) these studies strongly indicate that the detrimental effects of low-

level exposure to mercury from fish is likely to exceed the beneficial effects inherent to fish 

consumption per se (omega 3 fatty acids, etc.). 

Blanchard, et al. (2011), addressed risks associated with persistent low-level mercury 

exposure in the etiology of various developmental and neurodegenerative diseases, such as ASD 

and Alzheimer’s disease. In their preliminary study, carried out at 2 locations (Bexar County 

Texas and Santa Clara County California), the authors suggest that the “occurrence of autism has 

a positive co-variation with the spatial structure of the distribution of mercury in ambient air.” 

The authors note that where mercury air levels are higher the risk for ASD increases.  
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Yassa, et al. (2014) analyzed blood and hair samples from 45 autistic Egyptian children 

aged 2 and 10 years, and 45 controls in the same age range. The authors report significant 

differences between the two groups, with higher levels of mercury (as well as lead) in children 

with autism, concluding that “mercury [and lead should be] considered as one of the  main causes 

of autism.” (emphasis added).  

In addition, the ecological study by Dickerson et al. (2016; see above in lead section) 

suggest that mercury concentrations above the 75th percentile (>1.7 ng/m(3)) are associated with 

significantly higher ASD prevalence (adjusted RR = 1.20; 95 % CI: 1.03, 1.40). Thus, exposure 

to multiple metals may have synergistic effects on ASD prevalence. 

Ryu, et al. (2017) also noted that blood mercury levels at late pregnancy and in early 

childhood were positively correlated with more autistic behaviors in children when examined at 

5 years-of-age, noting “that mercury concentrations at late pregnancy, in cord blood, and at 2 and 

3 years of age were associated with autistic behaviors at 5 years of age.” This a particularly 

compelling study given its large size, prospective design and the authors’ adjustment for a wide 

range of potential confounding variables.  The study also confirms the etiological relevance of 

mercury exposure in early life.  

A prospective study was also conducted by Geier, et al. (2009) where they examined 

prenatal exposure to maternal dental amalgams (50% mercury) in relation to symptom severity in 

100 autistic children. The study found that children born to mothers with 6 or more amalgams 

were 3.2-fold significantly more likely to be diagnosed with severe ASD than children born to 

mothers with 5 or fewer amalgams. This is further evidence linking mercury exposure to the 

development of ASD. 

A systematic meta-analysis was performed by Jafari, et al. (2017) to evaluate a possible 

association between mercury in different tissues and ASD patients. The authors identified 44 

studies that met criteria for meta-analysis and were included in the analysis. Mercury levels in 

whole blood, red blood cells, and brain were significantly higher in ASD patients than healthy 

controls, while mercury levels in hair were significantly lower in ASD patients than healthy 
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subjects. Notwithstanding the negative results in the hair samples, the authors concluded “that 

mercury is an important causal factor in the etiology of ASD.”  

Saghazadeh and Rezaei (2017) investigated differences in heavy metal measures between 

patients with ASD and control subjects, using different specimens (whole blood, plasma, serum, 

red cells, hair and urine). Of the 52 studies eligible to be included in the systematic review, 48 

studies were included in the meta-analyses.  The authors observed that erythrocyte mercury 

concentrations were higher in cases. Interestingly, ASD patients in developing, but not in 

developed countries, had increased hair mercury levels.   

Li, et al. (2018) identified 180 children with ASD and 184 healthy controls and 

concluded that those with ASD had higher levels of mercury (and arsenic) and a lower level of 

cadmium. The levels of lead were statistically indistinguishable between the 2 groups. The 

authors noted that these findings “are consistent with numerous previous studies, supporting an 

important role for heavy metal exposure, particularly mercury, in the etiology of ASD.”  

El-Ansary, et al. (2017) probed the association between mercury (lead and selenium) and 

ASD in Saudi Arabian children (35 children with ASD and 30 age- and gender-matched healthy 

controls). A significant increase was reported in red blood cell levels of mercury (as well as lead)  

in patients with ASD compared to healthy controls.  

In a Chinese study carried out by Qin and colleagues (2018), blood plasma metal levels 

were compared in children with ASD and unaffected children in Shenzhen (China). The results 

established that children with ASD had higher mercury (as well as lead levels) compared to the 

control group. The authors also note positive associations between levels of mercury or lead and 

seafood consumption. 

Sulaiman and co-workers (2020) carried out a systematic review to determine the 

association between several metals and ASD. They reviewed 23 studies on mercury; while all the 

findings reported in each of the studies were not always in agreement, the review overall showed 

significant associations between mercury exposure and ASD. For mercury, increased levels in 

hair, urine, and blood were all positively associated with ASD.  
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Furthermore, a systematic review by Kern, et al. (2016) evaluated 91 studies and 

concluded that “[o]f these studies, the vast majority (74%) suggest that mercury is a risk factor 

for ASD, revealing both direct and indirect effects. The preponderance of the evidence indicates 

that mercury exposure is causal and/or contributory in ASD.” (emphasis added). 

As is the case for arsenic and lead, not all studies have shown a positive association 

between mercury exposure (characterized by hair or blood levels) and ASD. For example, 

Abdullah, et al. (2012) noted “no significant differences emerged between children with HDB 

and TD children”.  Some inconsistencies were noted in the meta-analysis by Saghazadeh and 

Rezaei (2017) as well as that of Jafari (2017). However, neither the Jafari nor Saghazadeh meta-

analyses evaluated the results of the large prospective Ryu (2017) study.  In any event, Jafari 

(2017) explicitly concluded that “mercury is an important causal factor in the etiology of ASD” 

(emphasis added).   

The preponderance of studies has established a causal association between mercury levels 

in various biological media (such as hair and blood) in children and ASD. Indeed, this causal 

association is also directly supported by the toxicological profile of mercury and  its known 

effects on the human brain, especially in younger children.  Given the reasons stated above, and 

notwithstanding the presence of some negative data, the literature consistently identifies positive 

associations between mercury exposure and ASD. Accordingly, it is my opinion to a reasonable 

degree of scientific certainty that mercury exposure is a causal agent of ASD..  

IX. ADDITIONAL CONSIDERATIONS 

The strengths and limitations of epidemiological approaches were reviewed by Paddle 

and Harrington (2000). As noted in their publication “the great strength of environmental 

epidemiology is that it studies the most relevant populations at the most relevant exposure 

levels.” Environmental epidemiology studies are generally designed to establish cause ± effect 

relationship, and where possible, a dose-response relationship between environmental exposures 

and health effects. As the topic under discussion is the impact of heavy metal exposures on ASD 
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and ADHD, it is highly advantageous to study children exposed to heavy metals at different 

levels and ages, analyze their metal levels in biological media (urine, hair, blood, etc.), and 

ascertain a possible association with ASD and ADHD. As noted by Paddle and Harrington 

(2000), advantages of environmental epidemiology studies mitigate the need to extrapolate 

across species and to extrapolate from high exposures, and when exposure levels are available 

based on routine measurements (such as those detailed above), recorded health effects (namely, 

ASD and ADHD) can be evaluated vis-à-vis exposures, and causality can be inferred. A second 

strength of environmental epidemiology studies is the “wide range of health conditions and 

exposure scenarios that can be studied”.  

Nonetheless, the limitations of environmental epidemiology studies must also be 

considered.  Such studies are generally observational, as it is impossible “to locate two 

populations who differ from one another only inasmuch as one population is” exposed to 

mercury, lead or arsenic, and the other is exposed to a low level or none. “The populations will, 

inevitably, also differ genetically, socially, occupationally and psychologically”. Some examples 

of limitations in the studies include, at times, small sample sizes (which were overcome in 

multiple meta-analyses), and the role of potential confounders (although many studies adjusted 

for potential confounders, and no actual confounders were noted to have caused systematic bias 

in the overall data). Methodological limitations such as low statistical power, exposure 

misclassification, and the effect of potential confounders might explain some the conflicting 

results found in the literature on the associations between the heavy metals discussed herein and 

ASD and/or ADHD.  Although  it must be noted that some potential confounders, such as fish 

consumption when considering mercury exposure and ASD, likely led to underestimations of the 

true associations (due to the protective effects of fatty acids from fish consumption).  

It is important to note that many of the epidemiological studies discussed here 

concomitantly assessed exposure and outcome, raising the possibility of reverse causality, 

meaning that the associations we observe may be the result of disease status as opposed to 

exposure.   However, when the totality of data is considered, and put into the context of the 
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known toxicological effects of these heavy metals on brain development, I do not believe the 

results seen in the studies with concomitant exposures and outcomes are the result of reverse 

causality.   

First, the associations are replicated in prospective child cohorts from around the world 

which did assess exposure prior to outcome.  In these studies, there is no risk of reverse 

causality.  Moreover, these prospective data are further supported by the availability of studies 

examining prenatal heavy metals exposures and their impact on ASD and ADHD development, 

which as discussed above found consistent associations and demonstrate the etiological 

relevance of heavy metal exposure prior to diagnoses.  

Second, studies analyzing baby teeth from early age, and prior to diagnosis, lend further 

support to a causal association, and undermine any concerns about reverse causality.  For 

example, Arora et al. (2017) used validated tooth-matrix biomarkers to estimate pre- and post-

natal exposure profiles of toxic metals, reporting divergences in their levels between ASD cases 

and their control siblings. Specifically, lead was reported to correlate with ASD severity and 

autistic traits, suggesting that specific developmental windows (pre- and or post-natal) can 

increase ASD risk and severity.  

Finally, as documented in the preceding sections, arsenic, lead and mercury are able to 

readily accumulate in the brain tissue and to induce intracellular oxidative stress. Oxidative 

stress-induced aggregates of hyperphosphorylated tau has been associated with microtubule 

network degradation commonly associated with neurodevelopmental effects, specifically ASD 

and ADHD. Beyrent et al. (2020) have shown that increased oxidative stress led to increased 

overall neuronal tau expression, concomitant with decreased phospho-tau expression, suggesting 

that oxidative stress induces “changes in tau proteins that precede cytoskeletal degradation and 

neurite retraction”. These effects will have severe effects on normal brain development, as these 

organelles “provide structural integrity and support to maintain neural connectivity throughout 

development”, and abnormalities in neural migration and connectivity of MT-associated 

proteins, therefore, may lead to detrimental developmental disorders, including intellectual 
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disabilities and ASD (Lasser et al., 2018). Indeed, one of the prospective epidemiological studies 

discussed above (Kim, et al., 2016) provided a helpful summary of the myriad of mechanisms 

relevant to the potential for lead to cause ASD:  

 
First, lead exposure might affect the nervous system by hindering 
neurotransmitter release, interfering with energy metabolism, generating 

reactive oxygen species, and activating apoptosis…Second, lead might 
influence the nervous system by increasing the risks of conditions such as 
hypertension, vitamin D deficiency, and impaired thyroid or renal 
function…Third, the presence of lead might affect the nervous system by 

inhibiting the formation of key molecules during the mature differentiation 
of glial cells. 
 

Having carefully considered the risk of confounding due to reverse causality, it is my 

opinion to a reasonable degree of scientific certainty, that the observed heavy metals in the 

participants at the time of diagnosis are likely suitable proxies for assessing a meaningful causal 

relationship and, as proxies, may in fact be underestimating the associations observed. The 

associations discussed in this report were observed in multiple children cohorts around the world, 

emphasizing that these outcomes are largely reflected by exposures per se to these metals, and 

likely less so by genetic susceptibility or selection bias. Concerns with reverse causality given 

the assessment of concomitant exposures and outcomes are largely diminished.  

My independent review of the toxicological literature confirms the mechanisms identified 

by Kim and colleagues (2016) for the causative role of lead in ASD etiology.  Moreover, the 

adverse effects of lead on neuroplasticity at key developmental life periods has been recognized 

as a plausible mechanism by which lead may cause ASD.  As discussed above lead exposure 

causes neuroinflammation. Smith et al. (2018).  This is due to its capacity of regulating multiple 

neuroinflammatory markers across brain areas, as recently observed by Bjorklund and colleagues 

(2018) and Kaur, et al. (2021). The available animal literature further supports the biologically 

plausible role of lead exposure in causing ASD.  For example, Chen and colleagues (2019) 

observed that lead exposure in mice caused elevated pro-inflammatory cytokines – indicative of 

immune dysregulation associated with ASD.  Notably, lead has been observed to have epigenetic 
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effects, affecting the expression of DNA binding proteins associated with ASD.  Schneider, et al. 

(2012). 

Multiple mechanisms have been postulated in understanding the mechanism by which 

lead can cause ADHD as well.  For example, animal data indicates that lead-induced histone 

acetylation is key to the observed effect of lead exposure (hyperactivity) in rats.  Luo, et al. 

(2014). Research has demonstrated lead-induced damage to the hippocampus, prefrontal cortex, 

basal ganglia, and the cerebellum, all of which are relevant to ADHD etiology.  Goodlad., et al. 

(2013).  For example, reduced volume and activity of the prefrontal cortex and cerebellum have 

been observed in individuals with ADHD.  Karri, et al. (2016); Finkelstein, et al. (1998).  Lead is 

known to interact with the NMDA receptor, thus leading to damage to the hippocampus.  Given 

the tendency of lead (as well as mercury and arsenic) to cross the blood-brain barrier, it has been 

noted to affect neurotransmitter systems relevant to ADHD etiology, such as, specifically, the 

dopaminergic, cholinergic (attention, impulsivity, and memory), and glutaminergic systems.   

Cory-Slechta, et al. (1995); Goodlad, et al. (2013).   

Mercury has been demonstrated to affect DNA methylation – a suspected mechanism of 

ASD – in rat models.  Overall, the biologically plausible role of mercury in ASD etiology has 

been repeatedly verified, particularly with reference to oxidative stress.  As Garrecht & Austin 

(2011) observed, “[mercury] has well-known effects relating to the disruption of sulfur chemistry 

leading to elevated oxidative stress which, in turn, results into broader physiological/organ 

affects, particularly to the CNS. Oxidative stress was consistently e levated in ASD… the existing 

scientific literature supports the biological plausibility of a [mercury]-based ASD pathogenesis.”  

(emphasis added).  As with lead, mercury exposure is a pathway to neuroinflammation, another 

recognized mechanism in ASD etiology.  Garrecht & Austin (2011). And, as discussed further 

below, such mechanisms are especially pertinent when considering pediatric populations during 

key developmental windows, with Pletz, et al. (2016) noting that “the time window which 

encompasses the vulnerability of the brain to disturbances of all these processes is ample.” 

The plausible mechanistic role of arsenic exposure in ASD etiology has been 
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demonstrated by abnormal frontal cortex neurogenesis observed in animal studies.  Zhou et al. 

(2018).  As discussed above, Tolins, et al. (2014) noted that animal data have associated arsenic 

exposure with alterations in brain cells and neurotransmitters, with both processes implicated in 

ASD.  Similar to lead and mercury, arsenic also causes oxidative stress (considered relevant to 

ASD development) and also affects epigenetic changes associated with ASD.  As discussed 

above, arsenic exposure has further been associated with related neurodevelopmental deficits 

such as memory hyperactivity.  Tolins, et al. (2014); Vahter, et al. (2020). 

A recent article by Gibb et al., 2019, presents an overview of the burden of disease from 

arsenic, methylmercury and lead, and discusses these three metals in the context of the World 

Health Organization's initiative to estimate the global burden of foodborne disease. The results 

indicate that in 2015, ingestion these metals resulted in more than 1 million illnesses, over 

56,000 deaths, and more than 9 million disability-adjusted life years (DALYs) worldwide. 

Notably, arsenic, methylmercury and lead were shown to have high DALYs per case in 

comparison with other foodborne disease agents, including infectious and parasitic agents. In 

addition, the authors (Gibb et al., 2019) reported that lead, arsenic, and methylmercury had high 

DALYs per 100,000 population in comparison to other foodborne disease agents.  

When addressing foodborne diseases, consideration of the potential effects of arsenic, 

mercury, and lead on brain development in the early years of childhood is only complete if we 

consider the origins of this process during the prenatal months.  

Brain development is a protracted process that starts about 2 weeks after conception and 

comprises a number of key stages that progress through the neonatal and infant period well into 

adolescence before the brain is fully mature. The brain continues to develop well into young 

adulthood (20 years). Brain development during the prenatal and post-natal months is largely 

subject to genetic control, although clearly the environment can play a role; for example, lack of 

nutrition (e.g., folic acid) and the presence of toxins, such as the one discussed herein, can both 

deleteriously influence the developing brain. Given the propensity of arsenic, mercury, and lead 

to adversely affect many processes responsible for the brain’s growth and maturation, especially 
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during the sensitive developmental window when toddlers are undergoing critical growth, it is 

clear that these metals can have long-term negative consequences on the child’s brain, resulting 

in a constellation of neurological impairments of which ASD and ADHD have also been 

recognized.     

In addition, it needs to be considered that the current animal and human literature of 

metal-induced neurotoxicity is primarily confined to single metal exposures. The literature 

addressing the neurodevelopmental effects of metal mixtures is still emerging. However, studies 

have, for example, addressed the effects combined metal exposures, such as lead and mercury. 

Shah-Kulkarni and colleague (2020) addressed the effects of prenatal metal exposure in early 

pregnancy (12-20 weeks), late pregnancy (>28 weeks), and at birth on neurodevelopment of 

infants at 6-months-of-age. In this epidemiologic study of 523 eligible mother-child pairs, the 

authors have demonstrated “the effect of combined exposure to metals on the neurodevelopment 

of infants aged 6 months, with significant interaction between lead and mercury”.  Joint effects 

of prenatal exposure to metal mixtures on neurodevelopmental outcomes at 20-40 months-of-age 

have also been reported in children exposed to arsenic and manganese (Valeri et al. , 2017). 

Moreover, Boucher, et al. (2012) observed a synergistic effect of lead and mercury mixtures on 

neurodevelopment following prenatal exposure. Namely, the combined effects of lead and 

mercury will be greater than the sum of their separate effects. 

Therefore, exposure to multiple metals will lead to greater neurological effects than 

exposure to a single metal. It is my opinion to a reasonable degree of scientific certainty that oral 

metal mixtures will lead to additive and synergistic effects of these metals, given that they share 

common toxicological modes-of-action. Thus, neurotoxicity for these metals as mixtures will 

increase the cumulative risk for neurological dysfunction (Shah-Kulkarni et al., 2020; Valeri et 

al., 2017). 

The developmental stage at which an infant/toddler is exposed to excessive levels of 

heavy metals should also be considered (see below; and, National Research Council (US) and 

Institute of Medicine (US) Committee on Integrating the Science of Early Childhood 

https://pubmed.ncbi.nlm.nih.gov/?sort=date&size=200&term=Shah-Kulkarni+S&cauthor_id=32069757
https://pubmed.ncbi.nlm.nih.gov/?sort=date&size=200&term=Shah-Kulkarni+S&cauthor_id=32069757
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Development, 2000). The human brain develops in a protracted fashion, starting in the third 

gestational week with differentiation of the neural progenitor cells and extending at least through 

late adolescence, and most likely through lifespan.  

Notably, at birth, the average neonate’s brain is about a quarter of the size of the average 

adult size (Stuart and Stevenson, 1950, 1959; Huelke, 1998). The first year is extremely 

dynamic, the brain doubling in size. By 3 years, the brain reaches about 75% of the adult size, 

and by the age 3 it is nearly full-grown, ~90% of adult brain size.  Brain development is 

characterized as a complex series of dynamic and adaptive processes that synchronously operate 

throughout the course of development to enable the emergence and differentiation of new neural 

structures and functions. These processes operate within highly constrained and genetically 

organized, but constantly changing contexts that, over time, support the emergence of the 

complex and dynamic structure of the human brain (Stiles and Jernigan, 2010).  

While the generation and migration of neurons occur largely in the prenatal period, 

proliferation and migration of glial progenitors continues for an extended period after birth, and 

the differentiation and maturation of these cells continue for a protracted period, throughout 

childhood (Stiles and Jernigan, 2010). The early childhood years are also highly crucial for 

synaptogenesis (connections between the various neurons). At least one million new neural 

connections (synapses) are made every second, more than at any other time in life. As described 

above, given their mode of action, arsenic, mercury, and lead will target critical 

neurodevelopmental processes – the interruption or disturbance of which are implicated in both 

ASD and ADHD – which are largely absent in the adult brain. Therefore, exposure to heavy 

metals will have a disproportionate adverse effect on the developing brain.  

As pointed out in the ECP (2021; 2021a) reports, exposure to heavy metals during the 

developmental window can lead to long-lasting brain damage (Grandjean et al., 2014). For 

example, exposure to environmental chemicals, including lead, is estimated to cause a  

40,131,518 total IQ points loss in 25.5 million children (or roughly calculated to correspond to 

1.57 lost IQ points per child), exceeding the combined IQ losses due to preterm birth 
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(34,031,025), brain tumors (37,288), and traumatic brain injury (5,827,300) (Bellinger et al., 

2011). Furthermore, it is estimated that for every one IQ point lost, it is estimated that a child’s 

lifetime earning capacity will decrease by $18,000 (Bellinger et al., 2013). No published 

literature could be found addressing the combined effects on IQ of metal mixtures containing the 

three metals - arsenic, mercury and lead. Nonetheless, as noted above (Shah-Kulkarni et al.,  

2020; Valeri et al., 2017), the available scientific evidence indicates significant interaction 

between them, and likely underestimates the magnitude of the effect on a child’s IQ.  

One also needs to consider that neurological adverse effect of early life exposure to these 

metals may not be unmasked for years or decades to come (Arkadir et al., 2014).  

The nervous system is highly redundant and with the ability to disguise the severity of 

an initial toxic insult. Take for example, Parkinson’s disease, the second most common age-

related complex, idiopathic neurological disorder in humans (Federoff, 2009; Harris et al., 

2020). At the cellular and molecular level, the hallmark pathological features of Parkinson’s 

disease include the loss of cells containing the neurotransmitter dopamine in the substantia 

nigra pars compacta, depletion of dopamine in the striatum, and development of Lewy bodies, 

which are an accumulation of misfolded proteins (including alpha-synuclein, phosphorylated 

tau, and amyloid beta) in intracellular spaces in the substantia nigra pars compacta (SNpc). 

Most notably, at the time of clinical presentation of Parkinson’s disease, it has been estimated 

that 60-80% of dopaminergic neurons in the SNpc have already degenerated (Federoff, 2009).  

Similarly, a child exposed to metals such as arsenic, lead, and mercury at, for example, 

6-months of age may not reveal adverse health consequences for months or years. There are 

different mechanisms by which metal-induced neurological deficits could interact with age. For 

example, cumulative damage could eventually reach a detectable level, or otherwise latent 

damage may be unmasked only as age-related impairments further challenge functional 

difficulties (Newland and Rasmussen, 2000).  

Importantly, the inability to detect heavy metals in hair, urine and/or blood of an 

individual does not exclude their persistence in the brain. For example, estimated  half-lives of 

https://pubmed.ncbi.nlm.nih.gov/?sort=date&size=200&term=Shah-Kulkarni+S&cauthor_id=32069757
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brain inorganic mercury are several years to several decades, where it is basically trapped in  the 

brain so levels in blood (or other biological media) would be expected to be very low (Rooney, 

2013) or non-detectable. The half-life of lead in humans (bone) is estimated at a range of 15 to 

20 years (ATSDR 2007), and will be a continued source of low-level exposure. The half-life of 

lead in brain is in the order of  months (ATSDR 2007). 

Blood levels of mercury decrease rapidly with half-life of three to five days.8 The half-

life of inorganic arsenic in blood is 4 to 6 hours, and the half-life of its methylated metabolites is 

20 to 30 hours.9 The half-life of lead is 1 to 2 months.10  

As extensively documented herein, heavy metals are able to gain access to the developing 

brain and cause neurotoxic effects. A plethora of established animal models link prenatal and 

early postnatal exposure to these heavy metals and ensuing reduction in brain weight, reduction 

in numbers of glial and neuronal cells, and alterations in neurotransmitter systems, and 

neurogenesis, to name a select few effects, all of which have been recognized as modes of action 

that cause the manifestation of neurodevelopmental disorders such as ASD and ADHD. These 

effects may occur at levels of exposure below current safety guidelines, and some neurocognitive 

consequences may become manifest only later in life, weeks, months or years. Furthermore, 

levels of metals may persist months and years after exposure ceased, and their effects could be 

attributed to their persistence in the brain. 

Finally, it is noteworthy that altered dopaminergic system functioning in response to 

heavy metal exposures has been implicated in the etiology of both ASD and ADHD. For 

example, lead exposure has been associated with the occurrence of ASD (Toscano and Guilarte, 

2005; Kim et al., 2013; Moreira et al., 2001) as well as ADHD (Luo et al., 2014).  Early 

postnatal exposure to mercury has been shown to cause lasting neurobehavioral impairments and 

neurochemical alterations in dopaminergic neurotransmission (Olczak et al., 2010). These 

 
8(https://www.atsdr.cdc.gov/toxprofiles/tp46.pdf). 
9(https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf). 
10(https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf). 

https://www.sciencedirect.com/topics/medicine-and-dentistry/neurotransmitter
https://www.atsdr.cdc.gov/toxprofiles/tp46.pdf
https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf
https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf
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findings are all consistent with observations that altered behaviors arise from a dysfunctional 

midbrain dopaminergic circuits originating in the midbrain, namely, the mesocorticolimbic and 

nigrostriatal pathways (Pavăl et al., 2021; Tripp and Wickens, 2008). It is thus plausib le that 

exposure to heavy metals, such as arsenic, lead and mercury, alone or in mixtures, may disrupt 

dopaminergic functions, underlying the neurodevelopmental deficits inherent to ASD and 

ADHD.  

 
 
Dated: November 12, 2021 

 
 
 
      

Michael Aschner, Ph.D. 
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Over the last 3 decades, studies in our laboratory were designed to (1) shed novel mechanistic insight into metal-
induced neurodegeneration; (2) identify targets for genetic or pharmacologic modulation of neurodegenerative 
disorders; (3) increase knowledge of the pathway involved in brain-induced oxidative stress; (4) develop 
improved research models for human disease using knowledge of environmental sciences. The following are 
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environmental links to neurodegenerative diseases: 
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1980s and early 1990s, glial cells were still viewed as mere support cells for neurons; hence the findings that 
altered homeostatic control in glia secondary to methylmercury exposure is a trigger for neurodegeneration 
was deemed novel in the field. By providing evidence for the preferential accumulation of methylmercury in 
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2. In addition to the contributions described above, with a team of collaborators, I directly documented molecular 
mechanisms of methylmercury-induced neurotoxicity, with major emphasis on the role of oxidative stress in 
this process. I also addressed potential neuroprotective mechanisms against metal-induced neurotoxicity, 
focusing on metallothionein and the role of astrocytic regulatory volume decrease in mediating brain-
associated injuries. Fixation on transgenic models as early as the 1990s permitted initial characterization on 
the interaction between genes x environment, and was highly innovative for this time period. Ultimately these 



translational studies characterized molecular mechanisms of neurotoxicity and potential targets for the 
mitigation of neurotoxic injuries. 
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3. Given wide-spread usage of manganese and the recognition that excessive brain manganese resulting from 
occupational or environmental exposure, or disease (hepatic encephalopathy) may result in a Parkinsonism 
syndrome (see below), I focused since the 1990s on mechanisms of brain manganese uptake, its distribution, 
and molecular mechanisms that render excess brain manganese a risk factor for neurodegeneration. Early 
studies characterized transport mechanisms of manganese across the blood-brain barrier and identified the 
divalent metal transporter 1 (DMT1) as a putative carrier for manganese. Furthermore, given the transporter’s 
propensity for shared transport of other divalent metals and the existing endemic deficiencies in global iron 
status (> 1 billion people), I have shown in cellular, molecular and magnetic resonance imaging studies that 
iron deficiency is a critical risk factor for increased manganese brain deposition and ensuing dopamine 
neurodegeneration. I have further characterized additional transporters for manganese, providing putative 
targets for pharmacological interventions and the maintenance of optimal manganese brain concentrations, 
thus reducing the risk for dopaminergic neurodegeneration. 
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4. Despite defined genetic and environmental factors we lack mechanistic understanding of the gene by 
environment interface of selective dopaminergic (DAergic) vulnerability. Accordingly, over the last decade I 
have focused our studies on understanding gene x environment interactions in the etiology of this disease, 
utilizing the nematode (C. elegans) as a model system. Our work has united state-of-the-art technological 
and scientific breakthroughs to perform studies that would not have been possible just a few years ago. The 
first breakthrough is the utilization of novel genetic tools for oxidative stress analysis in a transgenic worm 
line carrying Pgst-4::GFP along with transgenic animals selectively expressing green fluorescent protein (GFP) 
in DAergic neurons (Pdat-1::GFP). With my MPI collaborator, Dr. Bowman (Purdue University), we have also 
used human induced pluripotent stem cells (hiPSC) based technology and neurodevelopmental ontogeny 
recapitulating differentiation protocols, which enable the study of environmentally relevant toxicant exposures 
in an in vitro model of specific human neural lineages. In select studies, we have also used small molecule 
screens (library of 180,000 compounds). Combined, these studies have tested for genetic modifiers of 
methylmercury- and manganese-induced DAergic neurotoxicity, identifying potential targets for novel 
therapeutic approaches. 
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NIH R21 ES028960 (Zhang, Z.)   07/01/18-06/30/21   No Cost Extension through 06/30/21 
Role of Autophagy in Manganese-Induced       1.2 cal mo 
Neurotoxicity (Aschner, M. - Co-Investigator)  
The proposal tests the hypothesis that Mn impairs autophagy by inhibiting TFEB activity, and that compromised 
autophagy contributes to the pathogenesis of Mn neurotoxicity. The proposed study will provide novel information 
about cellular and molecular mechanisms underlying Mn-induced neuropathology, which may serve as a 
foundation for generating efficacious therapeutic strategies to combat Mn toxicity. 
 

NIH 1R01 ES024756 (Lee)    1/1/16-12/31/20   1.2 cal mo 
Mechanism of manganese-induced impair-       
ment of astrocytic glutamate transporters 
(Sub - Florida A&M University) (Aschner, M. - Co-Investigator) 
Project Goals: We will study the mechanism involved in Mn-induced repression of GLT-1 at the transcriptional 
level to identify the molecular target of Mn effect on GLT-1 by testing the role of the transcriptin factor yin yang 
1 (YY1) in this Mn effect. 
 

NIH 1R01 ES024812 (Mukhopadhyay)  01/01/16-12/31/20  0.6 cal mo 
Regulation of Manganese Homeostasis and       
Detoxificatin by SLC30A10 (Sub-U. Texas) (Aschner, M. - Co-Investigator) 
This grant application will determine the process by which Mn is removed from human cells. These studies will 
lay the foundation for developing drugs that can treat Mn-induced Parkinsonism by increasing the removal of Mn 
from cells. 
 

5 R01ES007331 (Aschner/Bowman)  03/01/96-05/31/21  3.0 cal mo    Renewal of current grant 
NIH/NIEHS - includes sub to Purdue U.        
Mechanisms of Methylmercury Induced Neuron Toxicity     
This study aims to (1) identify genetic modifiers of MeHg-induced neurotoxicity in C. elegans, (2) compare and 
contrast MeHg developmental neurotoxicological outcomes in human nigral versus cortical neural lineages, and 
(3) evaluate mechanisms by which genetic pathways modify MeHg developmental neurotoxicity. 
 

5 R01 ES010563 (Aschner/Bowman)  07/01/00-03/31/23  2.4 cal mo       
NIH/NIEHS                   
Mechanisms of Manganese Neurotoxicity 
Subcontract with Purdue ($290,163) 
In the third competitive renewal, this program is testing the hypothesis that threshold-level Mn neurotoxicity 
occurs via alteration of Mn-dependent/-activated biological functions such as insulin/insulin-like growth factor 
and related metabolic signaling pathways and dopamine neuronal function in worms and mammalian systems.  
 

NIH R01 NS110760 (Ballabh)    05/15/19-02/29/24  0.5 cal mo 
Intraventricular Hemorrhage Affects     
Production of Cortical Interneurons (Aschner, M. - Co-Investigator)        .  
Even though IVH results in neuro-psychiatric disorders, there is no information on how hemorrhage affects 
production of interneuron progenitors, fate of progenitors and their positioning in the cortical layers. It is unknown 
if minimizing oxidative stress will restore neurogenesis and density in the cortical interneurons in the survivors 
of IVH. It is also unclear how effectively a specific interneuronal deficit can be normalized in a developmental 
model of perinatal insult.  
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